Comparative Genomics of Zoonotic Pathogens: Genetic Determinants of Host Switching and Cross-Species Transmission

Olabisi Lawal 1 * , Ezekiel Tosin Babatunde 2, Ismaila Muhammed 3, Quadri N. Okiki 4, Eze Samson Chibueze 5, Victor Omeiza David 6, Caleb Otabil 7, Okabeonye Sunday Agbo 8, Ikechukwu kanu 9, Oyebamiji Abdulhalim Ololade 10
More Detail
1 Department of Medical Laboratory Science, University of Benin, Benin City,Nigeria
2 Department of Environmental Sciences / Environmental Sciences Southern Illinois University Edwardsville
3 Khalifa University, Abu Dhabi, United Arab Emirates. Department of Mathematics.
4 Department of Chemistry and Biochemistry Northern Illinois University, Dekalb, USA
5 Global Health and Infectious Disease Control Institute, Nasarawa State University
6 Department of Neurosurgery, Sheffield Teaching Hospitals NHS Foundation Trust. United Kingdom.
7 Department of Public Health and Speech-Language Pathology & Audiology The School of Education, Health and Human Behavior Southern Illinois University Edwardsville
8 Department of Applied Biology and Biotechnology ,Enugu State University of Science and Technology, Agbani, Nigeria.
9 Department of Chemistry, Ball State University, Muncie Indiana
10 Department of Physiology, College of Health Sciences, University of Ilorin, Kwara State, Nigeria.
* Corresponding Author
J CLIN MED KAZ, Volume 22, Issue 5, pp. 80-92. https://doi.org/10.23950/jcmk/16937
OPEN ACCESS 618 Views 31 Downloads
Download Full Text (PDF)
Author Contributions: O.P.L. conceptualized the idea. O.P.L., E.T.B., I.M., and QON reviewed the literature. O.P.L., U.C.V., I.M., E.S.C., V.O.D., C.O., O.S.A., I.K., and O.A.O. wrote the manuscript. All authors reviewed and approved the final manuscript for submission.

ABSTRACT

Emerging infectious diseases of animals that spread to humans (zoonoses) continue to represent a major threat to public health throughout the world. Knowledge of genetic elements that enable pathogens to navigate host shifts and species jumps is crucial for predicting and preventing zoonotic cross-species transmission. Comparative genomics, comparing whole-genome sequences across a range of hosts and pathogens, provides a powerful means to dissect the molecular determinants of zoonotic emergence. Here, we summarize and discuss recent advances in the understanding of genetic modifications that enable host switching and cross-species transmission by selected zoonotic pathogens. We review how comparative genomic analyses revealed the critical importance of factors such as receptor-binding domain evolution, immune evasion genes, and virulence determinants in improving pathogen fitness in new hosts.The review also highlights the integration of genomic data into One Health surveillance frameworks, enabling real-time monitoring, early detection, and improved outbreak response. Despite these advances, challenges including sampling bias, incomplete genomic databases, misannotation, and the complexity of predicting phenotype from genotype limit the field’s potential. Furthermore, ethical and biosafety concerns in studying high-risk zoonotic pathogens necessitate careful governance. We outline future directions, emphasizing the need for expanded wildlife sampling, longitudinal studies of host-pathogen co-evolution, and the application of artificial intelligence in zoonotic risk assessment. Building comprehensive, globally accessible genomic databases is essential for coordinated pathogen tracking and risk mitigation. Ultimately, comparative genomics is indispensable for understanding and managing zoonotic threats, and its continued advancement, integrated within interdisciplinary, data-driven One Health strategies, will be critical to preventing future pandemics.

CITATION

Lawal O, Babatunde ET, Muhammed I, Okiki QN, Chibueze ES, David VO, et al. Comparative Genomics of Zoonotic Pathogens: Genetic Determinants of Host Switching and Cross-Species Transmission. J CLIN MED KAZ. 2025;22(5):80-92. https://doi.org/10.23950/jcmk/16937

REFERENCES

  • About. Zoonotic disease: emerging public health threats in the Region. World Health Organization Regional Office for the Eastern Mediterranean. [cited 2025 May 29]. Available from: http://www.emro.who.int/fr/about-who/rc61/zoonotic-diseases.html
  • Tazerji SS, Nardini R, Safdar M, Shehata AA, Duarte PM. An overview of anthropogenic actions as drivers for emerging and re-emerging zoonotic diseases. Pathogens. 2022;11(11):1376. https://doi.org/10.3390/pathogens11111376
  • Bornstein K, Gryan G, Chang ES, Marchler-Bauer A, Schneider VA. The NIH Comparative Genomics Resource: addressing the promises and challenges of comparative genomics on human health. BMC Genomics. 2023;24:575. https://doi.org/10.1186/s12864-023-09583-5
  • Rahman MdT, Sobur MdA, Islam MdS, Ievy S, Hossain MdJ, El Zowalaty ME, Rahman AM, Ashour HM. Zoonotic diseases: etiology, impact, and control. Microorganisms. 2020;8(9):1405. https://doi.org/10.3390/microorganisms8091405
  • Webster JP, Gower CM, Knowles SCL, Molyneux DH, Fenton A. One Health: an ecological and evolutionary framework for tackling neglected zoonotic diseases. Evolutionary Applications. 2016;9(2):313–333. https://doi.org/10.1111/eva.12341
  • Hassell JM, Begon M, Ward MJ, Fèvre EM. Urbanization and disease emergence: dynamics at the wildlife-livestock-human interface. Trends in Ecology and Evolution. 2017;32(1):55–67. https://doi.org/10.1016/j.tree.2016.09.012
  • Pimentel AC, Beraldo CS, Cogni R. Host-shift as the cause of emerging infectious diseases: experimental approaches using Drosophila-virus interactions. Genetics and Molecular Biology. 2021;44(Suppl 1):e20200197. https://doi.org/10.1590/1678-4685-gmb-2020-0197
  • Seal S, Dharmarajan G, Khan I. Evolution of pathogen tolerance and emerging infections: a missing experimental paradigm. eLife. 2021;10:e68874. https://doi.org/10.7554/eLife.68874
  • LaTourrette K, Garcia-Ruiz H. Determinants of virus variation, evolution, and host adaptation. Pathogens. 2022;11(9):1039. https://doi.org/10.3390/pathogens11091039
  • Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host-pathogen interactions influencing zoonotic spillover potential and transmission in humans. Viruses. 2023;15(3):599. https://doi.org/10.3390/v15030599
  • Pauciullo S, Zulian V, La Frazia S, Paci P, Garbuglia AR. Spillover: Mechanisms, Genetic Barriers, and the Role of Reservoirs in Emerging Pathogens. Microorganisms. 2024;12(11):2191. https://doi.org/10.3390/microorganisms12112191
  • Nizamani MM, Zhang Q, Muhae-Ud-Din G, Wang Y. High-throughput sequencing in plant disease management: a comprehensive review of benefits, challenges, and future perspectives. Phytopathology Research. 2023;5(1):44. https://doi.org/10.1186/s42483-023-00180-5
  • Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, Shinde S, Patel P, Mahadik K, Patil P, Kumbhar P. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel). 2023;12(7):997. https://doi.org/10.3390/biology12070997
  • Oehler JB, Wright H, Stark Z, Mallett AJ, Schmitz U. The application of long-read sequencing in clinical settings. Human Genomics. 2023;17(1):73. https://doi.org/10.1186/s40246-023-00492-1
  • Armstrong J, Fiddes IT, Diekhans M, Paten B. Whole-Genome Alignment and Comparative Annotation. Annual Review of Animal Biosciences. 2019;7:41–64. https://doi.org/10.1146/annurev-animal-020518-115226
  • Oehler JB, Wright H, Stark Z, Mallett AJ, Schmitz U. The application of long-read sequencing in clinical settings. Human Genomics. 2023;17(1):73. https://doi.org/10.1186/s40246-023-00492-1
  • Bejaoui S, Nielsen SH, Rasmussen A, Coia JE, Andersen DT, Pedersen TB, Mortensen R, Justesen US. Comparison of Illumina and Oxford Nanopore sequencing data quality for Clostridioides difficile genome analysis and their application for epidemiological surveillance. BMC Genomics. 2025;26(1):92. https://doi.org/10.1186/s12864-025-09811-0
  • Hon T, Mars K, Young G, Tsai YC, Karalius JW, Landolin JM, Maurer N, Kudrna D, Hardigan M, Steiner L, Warren C. Highly accurate long-read HiFi sequencing data for five complex genomes. Scientific Data. 2020;7:399. https://doi.org/10.1038/s41597-020-00743-4
  • Ejigu GF, Jung J. Review on the computational genome annotation of sequences obtained by next-generation sequencing. Biology (Basel). 2020;9(9):295. https://doi.org/10.3390/biology9090295
  • Reis AC, Cunha MV. The open pan-genome architecture and virulence landscape of Mycobacterium bovis. Microbial Genomics. 2021;7(10):000664. https://doi.org/10.1099/mgen.0.000664
  • Jackson RW, Vinatzer B, Arnold DL, Dorus S, Murillo J. The influence of the accessory genome on bacterial pathogen evolution. Mobile Genetic Elements. 2011;1(1):55–65. https://doi.org/10.4161/mge.1.1.16410
  • Zhu H, Li D, Yue C, Li H. Development of single-nucleotide polymorphism and phylogenetic analysis of Rhododendron species in Zhejiang Province, China, using ddRAD-Seq technology. Plants. 2025;14(10):1548. https://doi.org/10.3390/plants14101548
  • Vello F, Filippini F, Righetto I. Bioinformatics goes viral: I. Databases, phylogenetics and phylodynamics tools for boosting virus research. Viruses. 2024;16(9):1425. https://doi.org/10.3390/v16091425
  • Bianconi I, Aschbacher R, Pagani E. Current uses and future perspectives of genomic technologies in clinical microbiology. Antibiotics (Basel). 2023;12(11):1580. https://doi.org/10.3390/antibiotics12111580
  • Rana VS, Kitsou C, Dumler JS, Pal U. Immune evasion strategies of major tick-transmitted bacterial pathogens. Trends in Microbiology. 2023;31(1):62–75. https://doi.org/10.1016/j.tim.2022.07.003
  • Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Research. 2015;202:120–134. https://doi.org/10.1016/j.virusres.2014.11.021
  • Okafor CE, Egwuatu EC, Owosagba VA, Njei T, Adeyemi BI, Onuche PUO, Ogunyemi EA, Shonibare L, Ezenagu C, Odewale GB. From Bench to Bedside: Medicinal Chemistry Strategies in the Development of Kinase Inhibitors for Cancer Therapy. Journal of Cancer and Tumor International. 2025;15(2):79–96. https://doi.org/10.9734/jcti/2025/v15i2301
  • Guo Y, Rumschlag-Booms E, Wang J, Xiao H, Yu J, Wang J, Shen H, Yu H. Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza. Virology Journal. 2009;6:39. https://doi.org/10.1186/1743-422X-6-39
  • Rubinchik S, Seddon A, Karlyshev AV. Molecular mechanisms and biological role of Campylobacter jejuni attachment to host cells. European Journal of Microbiology and Immunology (Bp). 2012;2(1):32–40. https://doi.org/10.1556/EuJMI.2.2012.1.5
  • Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Zhang X. The interaction of innate immune and adaptive immune system. MedComm. 2024;5(10):e714. https://doi.org/10.1002/mco2.714
  • Haasnoot J, de Vries W, Geutjes EJ, Prins M, de Haan P, Berkhout B. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathogens. 2007;3(6):e86. https://doi.org/10.1371/journal.ppat.0030086
  • Darmon E, Leach DRF. Bacterial genome instability. Microbiology and Molecular Biology Reviews. 2014;78(1):1–39. https://doi.org/10.1128/MMBR.00035-13
  • Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity factors of genomic islands in intestinal and extraintestinal Escherichia coli. Frontiers in Microbiology. 2020;11:2065. https://doi.org/10.3389/fmicb.2020.02065
  • Leal NC, Campos TL, Rezende AM, Docena C, Mendes-Marques CL, de Sá Cavalcanti FL, Leal-Balbino TC, Rodrigues LC. Comparative genomics of Acinetobacter baumannii clinical strains from Brazil reveals polyclonal dissemination and selective exchange of mobile genetic elements associated with resistance genes. Frontiers in Microbiology. 2020;11:1176. https://doi.org/10.3389/fmicb.2020.01176
  • Gopalan-Nair R, Jardinaud MF, Legrand L, Lopez-Roques C, Bouchez O, Genin S, Hajri A. Transcriptomic profiling reveals host-specific evolutionary pathways promoting enhanced fitness in the plant pathogen Ralstonia pseudosolanacearum. Microbial Genomics. 2023;9(12):001142. https://doi.org/10.1099/mgen.0.001142
  • Baxter MA, Jones BD. Two-component regulators control hilA expression by controlling fimZ and hilE expression within Salmonella enterica Serovar Typhimurium. Infection and Immunity. 2015;83(3):978–990. https://doi.org/10.1128/IAI.02987-14
  • Talarico E, Zambelli A, Araniti F, Greco E, Chiappetta A, Bruno L. Unravelling the epigenetic code: DNA methylation in plants and its role in stress response. Epigenomes. 2024;8(3):30. https://doi.org/10.3390/epigenomes8030030
  • Vashisht V, Vashisht A, Mondal AK, Farmaha J, Alptekin A, Singh H, Malhotra B, Bhatnagar A. Genomics for emerging pathogen identification and monitoring: prospects and obstacles. BioMedInformatics. 2023;3(4):1145–1177. https://doi.org/10.3390/biomedinformatics3040083
  • Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Zhang J, Wang Y. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduction and Targeted Therapy. 2024;9(1):1–68. https://doi.org/10.1038/s41392-023-01563-y
  • Jo WK, de Oliveira-Filho EF, Rasche A, Greenwood AD, Osterrieder K, Drexler JF. Potential zoonotic sources of SARS-CoV-2 infections. Transboundary and Emerging Diseases. 2021;68(4):1824–1834. https://doi.org/10.1111/tbed.13882
  • Winstone H, Lista MJ, Reid AC, Bouton C, Pickering S, Galao RP, Martin-Sancho L, Malim MH. The polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2. Journal of Virology. 2021;95(9):e02422-20. https://doi.org/10.1128/JVI.02422-20
  • Schindell BG, Allardice M, McBride JAM, Dennehy B, Kindrachuk J. SARS-CoV-2 and the missing link of intermediate hosts in viral emergence – what we can learn from other betacoronaviruses. Frontiers in Virology. 2022;2:875213. https://doi.org/10.3389/fviro.2022.875213
  • Rabalski L, Kosinski M, Cybulski P, Stadejek T, Lepek K. Genetic diversity of Type A influenza viruses found in swine herds in northwestern Poland from 2017 to 2019: the One Health perspective. Viruses. 2023;15(9):1893. https://doi.org/10.3390/v15091893
  • Zhao X, Shen M, Cui L, Liu C, Yu J, Wang G, Li Z, Guo X. Evolutionary analysis of hemagglutinin and neuraminidase gene variation in H1N1 swine influenza virus from vaccine intervention in China. Scientific Reports. 2024;14:28792. https://doi.org/10.1038/s41598-024-28792-1
  • Bussey KA, Bousse TL, Desmet EA, Kim B, Takimoto T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. Journal of Virology. 2010;84(9):4395–4404. https://doi.org/10.1128/JVI.02306-09
  • Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Malik YS, Saminathan M, Kumar N, Karthik K. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review. Veterinary Quarterly. 2019;39(1):26–55. https://doi.org/10.1080/01652176.2019.1580827
  • Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, Barclay WS. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nature Reviews Microbiology. 2023;21(3):162–177. https://doi.org/10.1038/s41579-022-00762-5
  • El Sayed F, Sapriel G, Fawal N, Gruber A, Bauer T, Heym B, Poyart C, Leblond P, Brisse S. In-host adaptation of Salmonella enterica serotype Dublin during prosthetic hip joint infection. Emerging Infectious Diseases. 2018;24(12):2360–2363. https://doi.org/10.3201/eid2412.180627
  • Ilyas B, Tsai CN, Coombes BK. Evolution of Salmonella-host cell interactions through a dynamic bacterial genome. Frontiers in Cellular and Infection Microbiology. 2017;7:428. https://doi.org/10.3389/fcimb.2017.00428
  • Mao M, He L, Yan Q. An updated overview on the bacterial PhoP/PhoQ two-component signal transduction system. Frontiers in Cellular and Infection Microbiology. 2025;15:1509037. https://doi.org/10.3389/fcimb.2025.1509037
  • González-Espinoza G, Arce-Gorvel V, Mémet S, Gorvel JP. Brucella: reservoirs and niches in animals and humans. Pathogens. 2021;10(2):186. https://doi.org/10.3390/pathogens10020186
  • Lofgren LA, Nguyen NH, Vilgalys R, Ruytinx J, Liao HL, Branco S, Davison J. Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. New Phytologist. 2021;230(2):774–792. https://doi.org/10.1111/nph.17184
  • Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiang H. The VirB system plays a crucial role in Brucella intracellular infection. International Journal of Molecular Sciences. 2021;22(24):13637. https://doi.org/10.3390/ijms222413637
  • Brito RM de M, de Lima Bessa G, Bastilho AL, Dantas-Torres F, de Andrade-Neto VF, Bueno LL, Fujiwara RT. Genetic diversity of Toxoplasma gondii in South America: occurrence, immunity, and fate of infection. Parasites and Vectors. 2023;16(1):461. https://doi.org/10.1186/s13071-023-06051-w
  • de Perio MA, Benedict K, Williams SL, Niemeier-Walsh C, Green BJ, Coffey C, Choe M. Occupational histoplasmosis: epidemiology and prevention measures. Journal of Fungi (Basel). 2021;7(7):510. https://doi.org/10.3390/jof7070510
  • Cressler CE, McLeod DV, Rozins C, van den Hoogen J, Day T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology. 2016;143(7):915–930. https://doi.org/10.1017/S003118201500092X
  • Zaneveld JRR, Parfrey LW, Van Treuren W, Lozupone C, Clemente JC, Knights D, Knight R. Combined phylogenetic and genomic approaches for the high-throughput study of microbial habitat adaptation. Trends in Microbiology. 2011;19(10):472–482. https://doi.org/10.1016/j.tim.2011.07.003
  • Dimonaco NJ, Salavati M, Shih BB. Computational analysis of SARS-CoV-2 and SARS-like coronavirus diversity in human, bat and pangolin populations. Viruses. 2020;13(1):49. https://doi.org/10.3390/v13010049
  • Liu Y, Wang Y, Wang Y, Mai H, Chen Y, Zhang Y, Zheng Y. Phylogenetic analysis of HA and NA genes of influenza A viruses in immunosuppressed inpatients in Beijing during the 2018–2020 influenza seasons. Virology Journal. 2023;20(1):101. https://doi.org/10.1186/s12985-023-02003-3
  • Khan MZI, Nazli A, Al-furas H, Asad MI, Ajmal I, Khan D, Shahid I. An overview of viral mutagenesis and the impact on pathogenesis of SARS-CoV-2 variants. Frontiers in Immunology. 2022;13:1034444. https://doi.org/10.3389/fimmu.2022.1034444
  • Xue S, Han Y, Wu F, Wang Q. Mutations in the SARS-CoV-2 spike receptor binding domain and their delicate balance between ACE2 affinity and antibody evasion. Protein & Cell. 2024;15(6):403–418. https://doi.org/10.1007/s13238-024-01065-7
  • Tanner JR, Kingsley RA. Evolution of Salmonella within hosts. Trends in Microbiology. 2018;26(12):986–998. https://doi.org/10.1016/j.tim.2018.06.007
  • Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host–pathogen interactions influencing zoonotic spillover potential and transmission in humans. Viruses. 2023;15(3):599. https://doi.org/10.3390/v15030599
  • Avino M, Ng GT, He Y, Renaud MS, Jones BR, Poon AFY. Tree shape-based approaches for the comparative study of cophylogeny. Ecology and Evolution. 2019;9(12):6756–6771. https://doi.org/10.1002/ece3.5244
  • Wertheim JO, Worobey M. Dating the age of the SIV lineages that gave rise to HIV-1 and HIV-2. PLoS Computational Biology. 2009;5(5):e1000377. https://doi.org/10.1371/journal.pcbi.1000377
  • Guindon S. Rates and rocks: strengths and weaknesses of molecular dating methods. Frontiers in Genetics. 2020;11:526. https://doi.org/10.3389/fgene.2020.00526
  • Pillai N, Ramkumar M, Nanduri B. Artificial intelligence models for zoonotic pathogens: a survey. Microorganisms. 2022;10(10):1911. https://doi.org/10.3390/microorganisms10101911
  • Kreuder Johnson C, Hitchens PL, Smiley Evans T, Goldstein T, Thomas K, Clements A, Orozco A, Doan K, Joly DO, Wolfe ND, Daszak P, Mazet JAK. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Scientific Reports. 2015;5:14830. https://doi.org/10.1038/srep14830
  • Cao Z, Liu C, Peng C, Ran Y, Yao Y, Xiao G, Yang C, Zhang L, Zhang Y. Ebola virus VP35 perturbs type I interferon signaling to facilitate viral replication. Virologica Sinica. 2023;38(6):922–930. https://doi.org/10.1016/j.virs.2023.10.002
  • Bentley SD, Parkhill J. Genomic perspectives on the evolution and spread of bacterial pathogens. Proceedings of the Royal Society B: Biological Sciences. 2015;282(1821):20150488. https://doi.org/10.1098/rspb.2015.0488
  • Chiara M, Horner DS, Gissi C, Pesole G. Comparative genomics reveals early emergence and biased spatiotemporal distribution of SARS-CoV-2. Molecular Biology and Evolution. 2021;38(6):2547–2565. https://doi.org/10.1093/molbev/msab050
  • Morel B, Barbera P, Czech L, Bettisworth B, Hübner L, Lutteropp S, Serdari D, Kostaki EG, Mamais I, Kozlov AM, Pavlidis P. Phylogenetic analysis of SARS-CoV-2 data is difficult. Molecular Biology and Evolution. 2021;38(5):1777–1791. https://doi.org/10.1093/molbev/msaa314
  • Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR, Warren WC, Hahn MW. Extensive error in the number of genes inferred from draft genome assemblies. PLoS Computational Biology. 2014;10(12):e1003998. https://doi.org/10.1371/journal.pcbi.1003998
  • Turakhia Y, Thornlow B, Hinrichs AS, De Maio N, Gozashti L, Lanfear R, Haussler D, Corbett-Detig R. Ultrafast sample placement on existing trees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic. Nature Genetics. 2021;53(6):809–816. https://doi.org/10.1038/s41588-021-00862-7
  • Lawal OP, Egwuatu EC, Akanbi KO, Orobator ET, Eweje OZ, Omotayo EO, Onuche PUO, Oyebamiji HO. Fighting resistance with data: leveraging digital surveillance to address antibiotic misuse in Nigeria. Path of Science. 2025;11(3):1009–1017. https://doi.org/10.22178/pos.1009-1017
  • Haagmans BL, Andeweg AC, Osterhaus ADME. The application of genomics to emerging zoonotic viral diseases. PLoS Pathogens. 2009;5(10):e1000557. https://doi.org/10.1371/journal.ppat.1000557
  • Lawal O, Oyebamiji HO, Kelenna IJ, Chioma FJ, Oyefeso E, Adeyemi BI, Egwuatu EC. A review on usage of digital health literacy to combat antibiotic misuse and misinformation in Nigeria: review article. Journal of Pharma Insights and Research. 2025;3(2):258–269. https://doi.org/10.9734/jpir/2025/v3i23049
  • Burgess T, Rennie S, Moodley K. Key ethical issues encountered during COVID-19 research: a thematic analysis of perspectives from South African research ethics committees. BMC Medical Ethics. 2023;24(1):11. https://doi.org/10.1186/s12910-023-00912-y
  • Rebai A, Abayomi A, Andanda P, Kerr R, Herbst K, Mabuka J, Tindana P, de Vries J. Responsible governance of genomics data and biospecimens in the context of broad consent: experiences of a pioneering access committee in Africa. BMJ Global Health. 2025;10(2):e016026. https://doi.org/10.1136/bmjgh-2024-016026
  • Santos JD, Sobral D, Pinheiro M, Isidro J, Bogaardt C, Pinto M, Borges V. INSaFLU-TELEVIR: an open web-based bioinformatics suite for viral metagenomic detection and routine genomic surveillance. Genome Medicine. 2024;16:61. https://doi.org/10.1186/s13073-024-01230-5
  • Mboowa G, Namulindwa A, Namatovu J, Kiconco J, Sanyu A, Sserwadda I, Musinguzi B, Zawedde J, Driciru M, Bwayo D, Ssemwanga D. Genomics and bioinformatics approaches for the surveillance, diagnostics, and management of infectious diseases: a focus on the COVID-19 pandemic. Frontiers in Genetics. 2021;12:694918. https://doi.org/10.3389/fgene.2021.694918
  • Erbo W, Tesfaye K, Mengistu M, Gari G, Agga GE. Systematic review of serological-based surveillance and diagnostic tests of zoonotic tuberculosis in Africa. Tropical Medicine and Infectious Disease. 2023;8(6):321. https://doi.org/10.3390/tropicalmed8060321
  • Lawal OP, Egwuatu EC, Akanbi KO, Orobator ET, Eweje OZ, Omotayo EO, Oyebamiji HO. Laboratory-based surveillance of antimicrobial resistance in Nigeria: a narrative review of current status, challenges, and efforts towards implementation. Microbial Pathogenesis. 2025;189:105225. https://doi.org/10.1016/j.micpath.2025.105225
  • Gagetti PS, Palma CV, Cerqueira AMF, Schechner V, Gales AC. Genomic surveillance and the evolution of antimicrobial resistance in bacterial pathogens. Frontiers in Public Health. 2023;11:1133984. https://doi.org/10.3389/fpubh.2023.1133984
  • Oboh MA, Ekundayo TC, Popoola AP, Lawal OP, Lawal B. Importance of One Health approach in improving antimicrobial resistance surveillance in Nigeria: a review. Bulletin of the National Research Centre. 2023;47(1):172. https://doi.org/10.1186/s42269-023-01046-x
  • Adedokun BO, Lawal OP, Lawal B, Ekundayo TC. Implementation of whole genome sequencing for public health surveillance in Africa: progress, challenges, and prospects. Infection Prevention in Practice. 2024;6(1):100356. https://doi.org/10.1016/j.infpip.2024.100356
  • Lawal OP, Oyebamiji HO, Orobator ET, Egwuatu EC, Adeyemi BI, Popoola AP. Exploring the prospects and challenges of implementing whole genome sequencing for AMR surveillance in Nigeria: a policy viewpoint. Health Science Reports. 2025;8(5):e2081. https://doi.org/10.1002/hsr2.2081
  • Lawal OP, Egwuatu EC, Oyebamiji HO, Oyefeso E, Popoola AP, Akanbi KO. Trends and prospects of One Health surveillance systems in Africa: a scoping review of genomics integration in AMR surveillance. African Journal of Laboratory Medicine. 2025;14(1):a1712. https://doi.org/10.4102/ajlm.v14i1.1712
  • Oyekale AS, Lawal OP, Popoola AP, Ekundayo TC. Public health perspectives on genomics integration into AMR surveillance systems in Nigeria: a critical appraisal. African Health Sciences. 2025;25(2):113–121. https://doi.org/10.4314/ahs.v25i2.15
  • Olayiwola OO, Oyebamiji HO, Lawal OP, Egwuatu EC, Akinyele AS, Adeyemi BI. Overcoming implementation gaps in genomic surveillance of zoonotic pathogens in sub-Saharan Africa: lessons from the COVID-19 pandemic. Journal of Global Health Reports. 2025;9:e2024023. https://doi.org/10.29392/001c.89206
  • Ogunleye OO, Basu D, Mueller D, Sneddon J, Seaton RA, Yinka-Ogunleye AF, Wambugu J, Godman B. Response to the novel COVID-19 pandemic across Africa: successes, challenges, and implications for the future. Frontiers in Pharmacology. 2020;11:1205. https://doi.org/10.3389/fphar.2020.01205
  • Lawal OP, Oyebamiji HO, Eweje OZ, Omotayo EO, Egwuatu EC, Oyefeso E. Strengthening AMR surveillance systems through genomics capacity building: an urgent need for Nigeria. Health Science Reports. 2025;8(4):e2045. https://doi.org/10.1002/hsr2.2045
  • Iwu CJ, Diop A, Nnaji CA, Muula AS, Jafali J, Wiysonge CS. The COVID-19 pandemic in Africa: a scoping review of the evolving roles, impact, and response of the African Union. Journal of Global Health. 2023;13:04067. https://doi.org/10.7189/jogh.13.04067
  • WHO Regional Office for Africa. Africa’s public health architecture: strengthening public health institutions to advance the right to health. Brazzaville: World Health Organization; 2022. 72 p.
  • Carlson BM. Human embryology and developmental biology. 4th ed. St. Louis: Mosby; 2009. 541 p.
  • Thumbi SM, Njenga MK, Marsh TL, Noh S, Otiang E, Munyua P, Ochieng L, Ogola E, Kalani M, Wanyoike S, McDermott JJ. Linking human health and livestock health: a One Health platform for integrated analysis of human health, livestock health, and economic welfare in livestock dependent communities. PLoS One. 2015;10(3):e0120761. https://doi.org/10.1371/journal.pone.0120761