Epigenetic Regulatory Landscape of Innate Immune Cells in Tuberculosis (Review)
Nuray Shaktay 1 * ,
Arailym Abilbayeva 2,
Anel Tarabayeva 2,
Dana Yerbolat 2 More Detail
1 Atchabarov SRI FAM, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
2 Shortanbayev General Immunology Department, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
* Corresponding Author
J CLIN MED KAZ, Volume 22, Issue 4, pp. 69-76.
https://doi.org/10.23950/jcmk/16633
OPEN ACCESS
556 Views
48 Downloads
Author Contributions: Conceptualization, A.T.; methodology, A.T. and A.A.; validation, A.A.; formal analysis – not applicable; investigation – not applicable; resources – not applicable; data curation – not applicable; writing – original draft preparation, N.S. and D.Y.; writing – review and editing, A.T. and A.A.; visualization, N.S. and D.Y.; supervision, A.T.; project administration, N.S.; funding acquisition – not applicable. All authors have read and agreed to the published version of the manuscript.
Data availability statement: not applicable.
ABSTRACT
This review presents an analysis of current research on the role of epigenetic mechanisms in regulating gene expression, which is fundamental to key functions of innate immunity in tuberculosis.
Tuberculosis (TB), caused by Mycobacterium tuberculosis, has a profound and multifaceted impact on human health. It can lead to a decline in quality of life, disability, and mortality, and is also associated with psychosocial challenges. Non-coding RNAs (ncRNAs) are extensively involved in numerous biological processes, including M. tuberculosis infection, and play a crucial role in gene regulation. In this review, we summarise findings on ncRNAs that influence the host’s immune response to M. tuberculosis infection. Our analysis demonstrates that pathogens can exploit interactions between ncRNAs and other biomolecules to evade immune-mediated clearance mechanisms and persist within host cells for extended periods. During the interaction between M. tuberculosis and host macrophages, ncRNA expression levels undergo significant alterations, affecting the regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. These findings provide valuable insights that could contribute to the development of novel approaches for the diagnosis and treatment of tuberculosis.
CITATION
Shaktay N, Abilbayeva A, Tarabayeva A, Yerbolat D. Epigenetic Regulatory Landscape of Innate Immune Cells in Tuberculosis (Review). J CLIN MED KAZ. 2025;22(4):69-76.
https://doi.org/10.23950/jcmk/16633
REFERENCES
- WHO Global Tuberculosis Report. 2024. Available at: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024 (date of access: 15.11.2024).
- Kiazyk S, Ball TB. Latent tuberculosis infection: An overview. Can Commun Dis Rep. 2017; 43(3-4): 62–66. https://doi.org/10.14745/ccdr.v43i34a01.
- Ravesloot-Chávez MM, Van Dis E, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol. 2021; 39: 611–637. https://doi.org/10.1146/annurev-immunol-093019-010426 .
- Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2024; 25: 211–232. https://doi.org/10.1038/s41576-023-00662-1
- Gareev I, de Jesus Encarnacion Ramirez M, Goncharov E, Ivliev D, Shumadalova A, Ilyasova T, Wang C. MiRNAs and lncRNAs in the regulation of innate immune signaling. Noncoding RNA Res. 2023; 8(4): 534–541. https://doi.org/10.1016/j.ncrna.2023.07.002.
- Yan L, Wang J, Cai X, Liou YC, Shen HM, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (2020). 2024; 5(8): 658. https://doi.org/10.1002/mco2.658.
- Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. Pathog Dis. 2018; 76(4): fty037. https://doi.org/10.1093/femspd/fty037.
- Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014; 5: 491. https://doi.org/10.3389/fimmu.2014.00491.
- Churina EG, Popova AV, Urazova OI, Kononova TE, Voronova GA. Macrophages and Anti-Tuberculosis Immunity (Literature Review). Bulletin of Tomsk State University. Chemistry. 2022; 26: 32–59. https://doi.org/10.17223/24135542/26/3.
- Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol. 2022; 20(12): 750–766. https://doi.org/10.1038/s41579-022-00763-4.
- Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol. 2020; 8: 409. https://doi.org/10.3389/fcell.2020.00409.
- Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020; 21(8): 475–490. https://doi.org/10.1038/s41580-020-0243-y.
- Graf J, Kretz M. From structure to function: Route to understanding lncRNA mechanism. Bioessays. 2020; 42(12): e2000027. https://doi.org/10.1002/bies.202000027
- Bettencourt P, Marion S, Pires D, Santos LF, Lastrucci C, Carmo N, Blake J, Benes V, Griffiths G, Neyrolles O, Lugo-Villarino G, Anes E. Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Front Cell Infect Microbiol. 2013; 3: 19 https://doi.org/10.3389/fcimb.2013.00019
- Feng D, Peng X, Jiahong M, Cheng J, Huihui T, Jianhua Z. Pulmonary tuberculosis biomarker miR-215-5p inhibits autophagosome-lysosome fusion in macrophages. Tuberculosis. 2023; 143: 102422. https://doi.org/10.1016/j.tube.2023.102422
- Chen DY, Chen YM, Lin CF, Lo CM, Liu HJ, Liao TL. MicroRNA-889 inhibits autophagy to maintain Mycobacterial survival in patients with latent tuberculosis infection by targeting TWEAK. mBio. 2020; 11(1) :e03045-19. https://doi.org/10.1128/mbio.03045-19
- Liu K, Hong D, Zhang F, Li X, He M, Han X, Zhang G, Xu G, Stonehouse NJ, Jiang Z, An W, Guo L. MicroRNA-106a Inhibits Autophagy Process and Antimicrobial Responses by Targeting ULK1, ATG7, and ATG16L1 During Mycobacterial Infection. Front Immunol. 2021; 11: 610021. https://doi.org/10.3389/fimmu.2020.610021
- Shi Q, Wang J, Yang Z, Liu Y. CircAGFG1 modulates autophagy and apoptosis of macrophages infected by Mycobacterium tuberculosis via the Notch signaling pathway. Ann Transl Med. 2020; 8(10): 645. https://doi.org/10.21037/atm.2020-20-3048.
- Luo HL, Pi J, Zhang JA, Yang EZ, Xu H, Luo H, Shen L, Peng Y, Liu GB, Song CM, Li KY, Wu XJ, Zheng BY, Shen HB, Chen ZW, Xu JF. Circular RNA TRAPPC6B inhibits intracellular Mycobacterium tuberculosis growth while inducing autophagy in macrophages by targeting microRNA-874-3p. Clin Transl Immunology. 2021; 10(2): e1254. https://doi.org/10.1002/cti2.1254.
- Pawar K, Hanisch C, Palma Vera SE, Einspanier R, Sharbati S. Down regulated lncRNA MEG3 eliminates mycobacteria in macrophages via autophagy. Sci Rep. 2016; 6: 19416. https://doi.org/10.1038/srep19416.
- Ke Z, Lu J, Zhu J, Yang Z, Jin Z, Yuan L. Down-regulation of lincRNA-EPS regulates apoptosis and autophagy in BCG-infected RAW264.7 macrophages via JNK/MAPK signaling pathway. Infect Genet Evol. 2020; 77: 104077. https://doi.org/10.1016/j.meegid.2019.104077.
- Li M, Cui J, Niu W, Huang J, Feng T, Sun B, Yao H. Long non-coding PCED1B-AS1 regulates macrophage apoptosis and autophagy by sponging miR-155 in active tuberculosis. Biochem Biophys Res Commun. 2019; 509(3): 803–809. https://doi.org/10.1016/j.bbrc.2019.01.005.
- Jiang F, Lou J, Zheng XM, Yang XY. LncRNA MIAT regulates autophagy and apoptosis of macrophage infected by Mycobacterium tuberculosis through the miR-665/ULK1 signaling axis. Mol Immunol. 2021;139: 42-49. https://doi.org/10.1016/j.molimm.2021.07.023.
- Shi G, Mao G, Xie K, Wu D, Wang W. MiR-1178 regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis-infected macrophages partly via TLR4. J Cell Biochem. 2018; 119(9): 7449–7457. https://doi.org/10.1002/jcb.27054.
- Li WT, Zhang Q. MicroRNA-708-5p regulates mycobacterial vitality and the secretion of inflammatory factors in Mycobacterium tuberculosis-infected macrophages by targeting TLR4. Eur Rev Med Pharmacol Sci. 2019; 23(18): 8028–8038. https://doi.org/10.26355/eurrev_201909_19019.
- Niu W, Sun B, Li M, Cui J, Huang J, Zhang L. TLR-4/microRNA-125a/NF-κB signaling modulates the immune response to Mycobacterium tuberculosis infection. Cell Cycle. 2018; 17(15): 1931–1945. https://doi.org/10.1080/15384101.2018.1509636.
- Howard NC, Khader SA. Immunometabolism during Mycobacterium tuberculosis Infection. Trends Microbiol. 2020; 28(10): 832-850. https://doi.org/10.1016/j.tim.2020.04.010.
- Hackett EE, Charles-Messance H, O'Leary SM, Gleeson LE, Muñoz-Wolf N, Case S, Wedderburn A, Johnston DG, Williams MA, Smyth A, Ouimet M, Moore KJ, Lavelle EC, Corr SC, Gordon SV, Keane J, Sheedy FJ. Mycobacterium tuberculosis Limits Host Glycolysis and IL-1β by Restriction of PFK-M via MicroRNA-21. Cell Rep. 2020; 30(1): 124–136.e4. https://doi.org/10.1016/j.celrep.2019.12.015.
- Mal S, Majumder D, Birari P, Sharma AK, Gupta U, Jana K, Kundu M, Basu J. The miR-26a/SIRT6/HIF-1α axis regulates glycolysis and inflammatory responses in host macrophages during Mycobacterium tuberculosis infection. FEBS Lett. 2024; 598(20): 2592–2614. https://doi.org/10.1002/1873-3468.15001.
- Lam A, Prabhu R, Gross C.M, Riesenberg LA, Singh V, Aggarwal S. Role of apoptosis and autophagy in tuberculosis. Am J Physiol Lung Cell Mol Physiol. 2017; 313(2): L218–L229. https://doi.org/10.1152/ajplung.00162.2017.
- Liu G, Wan Q, Li J, Hu X, Gu X, Xu S. Silencing miR-125b-5p attenuates inflammatory response and apoptosis inhibition in mycobacterium tuberculosis-infected human macrophages by targeting DNA damage-regulated autophagy modulator 2 (DRAM2). Cell Cycle. 2020; 19(22): 3182–3194. https://doi.org/10.1080/15384101.2020.1838792.
- Xi X, Zhang C, Han W, Zhao H, Zhang H, Jiao J. MicroRNA-223 Is Upregulated in Active Tuberculosis Patients and Inhibits Apoptosis of Macrophages by Targeting FOXO3. Genet Test Mol Biomarkers. 2015; 19(12): 650–656. https://doi.org/10.1089/gtmb.2015.0090.
- Sun Q, Shen X, Wang P, Ma J, Sha W. Targeting cyclophilin-D by miR-1281 protects human macrophages from Mycobacterium tuberculosis-induced programmed necrosis and apoptosis. Aging (Albany NY). 2019; 11(24): 12661–12673. https://doi.org/10.18632/aging.102593.
- Fu B, Xue W, Zhang H, Zhang R, Feldman K, Zhao Q, Zhang S, Shi L, Pavani KC, Nian W, Lin X, Wu H. MicroRNA-325-3p Facilitates Immune Escape of Mycobacterium tuberculosis through Targeting LNX1 via NEK6 Accumulation to Promote Anti-Apoptotic STAT3 Signaling. mBio. 2020; 11(3): e00557-20. https://doi.org/10.1128/mbio.00557-20.
- Abdalla AE, Alanazi A, Abosalif KOA, Alameen AAM, Junaid K, Manni E, Talha AA, Ejaz H. MicroRNA-155, a double-blade sword regulator of innate tuberculosis immunity. Microb Pathog. 2023; 185: 106438. https://doi.org/10.1016/j.micpath.2023.106438.
- Aldakheel FM, Syed R, Ahmed M, Xu T. Modulation of lncRNA NEAT1 overturns the macrophages-based immune response in M. tuberculosis-infected patients via miR-373 regulation. J Appl Genet. 2024; 65(2): 321–329. https://doi.org/10.1007/s13353-023-00808-1.
- McKelvey KJ, Powell KL, Ashton AW, Morris JM, McCracken SA. Exosomes: Mechanisms of Uptake. J Circ Biomark. 2015; 4: 7. https://doi.org/10.5772/61186.
- Sun Z, Pang X, Wang X, Zeng H. Differential expression analysis of miRNAs in macrophage-derived exosomes in the tuberculosis-infected bone microenvironment. Front Microbiol. 2023; 14: 1236012. https://doi.org/10.3389/fmicb.2023.1236012.
- Zhang D, Yi Z, Fu Y. Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation. J Cell Biochem. 2019; 120(4): 5889–5896. https://doi.org/10.1002/jcb.27874.
- Lee KY. M1 and M2 polarization of macrophages: a mini-review. Medical Biological Science and Engineering. 2019; 2(1): 1–5. https://doi.org/10.30579/mbse.2019.2.1.1.
- Van Coillie S, Wiernicki B, Xu J. Molecular and Cellular Functions of CTLA-4. Adv Exp Med Biol. 2020; 1248: 7–32. https://doi.org/10.1007/978-981-15-3266-5_2.
- Huang Z, Yao F, Liu J, Xu J, Guo Y, Su R, Luo Q, Li J. Up-regulation of circRNA-0003528 promotes mycobacterium tuberculosis associated macrophage polarization via down-regulating miR-224-5p, miR-324-5p and miR-488-5p and up-regulating CTLA4. Aging (Albany NY). 2020; 12(24): 25658–25672. https://doi.org/10.18632/aging.104175.
- Luo XB, Li LT, Xi JC, Liu HT, Liu Z, Yu L, Tang PF. Negative pressure promotes macrophage M1 polarization after Mycobacterium tuberculosis infection via the lncRNA XIST/microRNA-125b-5p/A20/NF-κB axis. Ann N Y Acad Sci. 2022; 1514(1): 116–131. https://doi.org/10.1111/nyas.14781.