Experimental study of the pharmacological activity of new azaheterocycles derivatives: A literature review

Malika Khaiitova 1 * , Aida Seitaliyeva 1, Elmira Satbayeva 1, Daniya Serdalieva 1, Talgat Nurgozhin 1
More Detail
1 Department of Pharmacology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
* Corresponding Author
J CLIN MED KAZ, Volume 19, Issue 1, pp. 16-22. https://doi.org/10.23950/jcmk/11680
OPEN ACCESS 977 Views 717 Downloads
Download Full Text (PDF)

ABSTRACT

Diseases associated with the pathology of the cardiovascular system are one of the key causes of death all over the world. In particular, arrhythmia may entail the most severe complications, including unexpected death. With high-tech advances, antiarrhythmic drugs remain an integral part of both therapy and prevention. However, the existing arsenal of drugs often does not provide the necessary clinical effect, and therapy is associated with a high risk of severe adverse events. Another significant problem today is the administration of low-toxic drugs that provide effective anesthesia with a sufficient depth and duration of action. Currently, there is also the problem of the limited effectiveness of many drugs with antitumor, antimicrobial, antiviral, antifungal, anti-inflammatory activity and action on the central nervous system. One of the solutions to address the existing problems in these areas is the search and study of compounds that may serve as a basis for the development of new drugs. Given the membrane-stabilizing action by influencing ion channels, new derivatives of azaheterocycles- compounds of piperidine and piperazine are of particular interest in these areas of medicine. According to domestic studies, new piperidine derivatives during screening and in-depth studies showed pronounced local anesthetic activity during infiltration and conduction anesthesia. The results of a number of studies confirm the presence of antiarrhythmic activity in piperidine derivatives. Experimental data on the synthesis and study of the pharmacological activity of new derivatives of piperidine and piperazine in world practice prove their promise for the creation of drugs in various fields of medicine in the future.

CITATION

Khaiitova M, Seitaliyeva A, Satbayeva E, Serdalieva D, Nurgozhin T. Experimental study of the pharmacological activity of new azaheterocycles derivatives: A literature review. J CLIN MED KAZ. 2022;19(1):16-22. https://doi.org/10.23950/jcmk/11680

REFERENCES

  • Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135(10):146-603. https://doi:10.1161/CIR.0000000000000485
  • Jianshi L, Hong W, Lingfang W, Lin Z, Xin L, Yi K, Ke W, Yongqiang Y, Taurine–magnesium coordination compound, a potential anti-arrhythmic complex, improves aconitine-induced arrhythmias through regulation of multiple ion channels. Toxicology and Applied Pharmacology. 2018;356:182-190. https://doi.org/10.1016/j.taap.2018.08.008
  • Heijman J, Ghezelbash S, Dobrev D. Investigational antiarrhythmic agents: promising drugs in early clinical development. Expert Opin Investig Drugs. 2017;26(8):897-907. https://doi:10.1080/13543784.2017.1353601
  • Grigor'eva S. A., Karimova R. G. Antiaritmicheskoe dejstvie proizvodnyh bromnikotinovoj kisloty na hloridkal'cievoj modeli aritmii (Antiarrhythmic Effect of Bromonicotinic Acid Derivatives on Calcium Chloride Model of Arrhythmia). [in Russian] Vestnik medicinskogo instituta «Reaviz»: reabilitaciya, vrach i zdorov'e. 2016;1(21):82-86.
  • Murillo L., Juergen E, Henrik J, Éverton C, Rosanna I, Daniele R, et al. Probing the dynamics of complexed local anesthetics via neutron scattering spectroscopy and DFT calculations, International Journal of Pharmaceutics. 2017;524(1–2):397-406. https://doi.org/10.1016/j.ijpharm.2017.03.051
  • Grzanka A, Wasilewska I, Śliwczyńska M, Misiołek H. Hypersensitivity lo local anesthetics. Anaesthesiol Intensive Ther. 2016;48(2):128-34. https://doi.org/10.5603/AIT.a2016.0017
  • Becker DE, Reed KL. Local anesthetics: review of pharmacological considerations. Anesth Prog. 2012;59(2):90-101. https://doi:10.2344/0003-3006-59.2.90
  • Cherobin ACFP, Tavares GT. Safety of local anesthetics. An Bras Dermatol. 2020;95(1):82-90. https://doi:10.1016/j.abd.2019.09.025
  • A Scholz. Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. British Journal of Anaesthesia. 2002;89(1):52-61. https://doi.org/10.1093/bja/aef163
  • Stanley N, Göran D, Leif C. Model systems for the discovery and development of antiarrhythmic drugs. Progress in Biophysics and Molecular Biology. 2008;98(2–3):328-339. https://doi.org/10.1016/j.pbiomolbio.2008.10.009
  • Nguyen PT, DeMarco KR, Vorobyov I, Clancy CE, Yarov-Yarovoy V. Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel. Proc Natl Acad Sci U S A. 2019;116(8):2945-2954. https://doi:10.1073/pnas.1817446116
  • Tikhonov DB, Zhorov BS. Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants. J Gen Physiol. 2017;149(4):465-481. https://doi:10.1085/jgp.201611668
  • Kadyrova D, Pichkhadze G, Praliev K, YU V. Kazkain – perspektivnyj otechestvennyj mestnyj anestetik (Kazkain is a promising domestic local anesthetic) [in Russian]. Vestnik Kazahskogo Nacional'nogo medicinskogo universiteta. 2010;5(3):221-224.
  • Muhamedzhanova G, Pichkhadze G, Praliev K, Kadyrova D, Esetova K, Nasyrova S et al. Mestnoanesteziruyushchaya aktivnost' proizvodnogo piperidina (MAV-54) v kombinacii s vazokonstriktorom (Local anesthetic activity of a piperidine derivative (LAS-54) in combination with a vasoconstrictor) [in Russian]. Vestnik Kazahskogo Nacional'nogo medicinskogo universiteta. 2012;2:352-354.
  • Pichkhadze G, Muhamedzhanova G, Kadyrova D, Kim I, Esetova K. Izuchenie mestnoanesteziruyushchej aktivnosti pri infil'tracionnoj anestezii v ryadu vnov' sintezirovannyh proizvodnyh piperidina (Study of local anesthetic activity during infiltration anesthesia in a series of newly synthesized piperidine derivatives) [in Russian]. Vestnik Kazahskogo Nacional'nogo medicinskogo universiteta. 2014;4:275-277.
  • Pichkhadze G, Kadyrova D, Smagulova G, Praliev K, Raimkulova K. Poisk soedinenij s mestnoanesteziruyushchej aktivnost'yu pri provodnikovoj anestezii (Search for compounds with local anesthetic activity during conduction anesthesia) [in Russian]. Vestnik Kazahskogo Nacional'nogo medicinskogo universiteta. 2015;2:532-534.
  • Kadyrova D, Amirkulova M, Smagulova G, Satbaeva E, Kim I, Anan'eva L. Mestnoanesteziruyushchaya aktivnost' i ostraya toksichnost' ryada proizvodnyh piperidina (Local anesthetic activity and acute toxicity of a number of piperidine derivatives) [in Russian]. Vestnik Kazahskogo Nacional'nogo medicinskogo universiteta. 2017;2:267-269.
  • Amirkulova M, Kadyrova D, Satbaeva E, Smagulova G., Praliev K, YU V. Eksperimental'noe izuchenie mestnoanesteziruyushchej aktivnosti novyh proizvodnyh piperidinana modeli infil'tracionnoj anestezii (Experimental study of the local anesthetic activity of new piperidinane derivatives in the model of infiltration anesthesia) [in Russian]. Vestnik Kazahskogo Nacional'nogo medicinskogo universiteta. 2017;3:330-331.
  • Esetova K, Nasyrova S, Imashova SH., Muhamedzhanova G, Ajtzhanova G, Amirkulova M. Izuchenie protivoaritmicheskoj aktivnosti i toksichnosti vnov' sintezirovannyh proizvodnyh piperidina (Study of antiarrhythmic activity and toxicity of newly synthesized piperidine derivatives) [in Russian]. Vestnik Kazahskogo Nacional'nogo medicinskogo universiteta. 2012;2:45-47.
  • Esetova K, Kadyrova D, Smagulova G, Kim I. Skriningovye issledovaniya protivoaritmicheskoj aktivnosti i ostroj toksichnosti novyh sintezirovannyh proizvodnyh piperidina (Screening studies of antiarrhythmic activity and acute toxicity of new synthesized piperidine derivatives) [in Russian]. Vestnik Kazahskogo Nacional'nogo medicinskogo universiteta. 2017;2:265-266.
  • Bibek Pati1, Subhasis Banerjee. Importance of Piperidine Moiety in Medicinal Chemistry Research: A Review. Journal of Pharmacy Research. 2012;5(12):5493-5509.
  • Goel P, Alam O, Naim MJ, Nawaz F, Iqbal M, Alam MI. Recent advancement of piperidine moiety in treatment of cancer- A review. Eur J Med Chem. 2018;5(157):480-502. https://doi:10.1016/j.ejmech.2018.08.017
  • Gong-Qing Liu, Till Opatz. Recent Advances in the Synthesis of Piperidines: Functionalization of Preexisting Ring Systems. In: Chapter 2, Eric F.V. Scriven, Christopher A. Ramsden еditors. Advances in Heterocyclic Chemistry. Academic Press. 2018; 107-234. https://doi.org/10.1016/bs.aihch.2017.10.001
  • Yarim M, Koksal M, Durmaz I, Atalay R. Cancer cell cytotoxicities of 1-(4-substitutedbenzoyl)-4-(4-chlorobenzhydryl)piperazine derivatives. Int J Mol Sci. 2012;13(7):8071-8085. https://doi:10.3390/ijms13078071
  • Yanqun Z, Ruiyuan C, Tianhong Z, Song Li, Wu Z. Design and synthesis of piperidine derivatives as novel human heat shock protein 70 inhibitors for the treatment of drug-resistant tumors. European Journal of Medicinal Chemistry. 2015;97:19-31. https://doi.org/10.1016/j.ejmech.2015.04.043
  • Manouchehrizadeh E, Mostoufi A, Tahanpesar E. et al. Design, Synthesis, Molecular Docking and Biological Activity of New Piperidine and Piperazine Derivatives of Dichloroacetate as Potential Anticancer Agents. Pharm Chem J. 2020;54:148–153. https://doi.org/10.1007/s11094-020-02172-4
  • Niina A, Juha R, Casandra R, et al. Piperazine and Piperidine Triazole Ureas as Ultrapotent and Highly Selective Inhibitors of Monoacylglycerol Lipase. Chemistry & Biology. 2013;20(3):379-390. https://doi.org/10.1016/j.chembiol.2013.01.012
  • Kaya B, Yurttaş L, Sağlik BN, Levent S, Özkay Y, Kaplancikli ZA. Novel 1-(2-pyrimidin-2-yl) piperazine derivatives as selective monoamine oxidase (MAO)-A inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):193-202. https://doi:10.1080/14756366.2016.1247054
  • Chandran M, Renuka J, Sridevi JP, Pedgaonkar GS, Asmitha V, Yogeeswari P, Sriram D. Benzothiazinone-piperazine derivatives as efficient Mycobacterium tuberculosis DNA gyrase inhibitors. Int J Mycobacteriol. 2015;4(2):104-15. https://doi:10.1016/j.ijmyco.2015.02.002
  • Singh V, Pacitto A, Donini S, et al. Synthesis and Structure-Activity relationship of 1-(5-isoquinolinesulfonyl)piperazine analogues as inhibitors of Mycobacterium tuberculosis IMPDH. Eur J Med Chem. 2019;174:309-329. https://doi:10.1016/j.ejmech.2019.04.027
  • Dou D, He G, Mandadapu SR, et al. Inhibition of noroviruses by piperazine derivatives. Bioorg Med Chem Lett. 2012;22(1):377-379. https://doi:10.1016/j.bmcl.2011.10.122
  • Zhang X, Wang H, Li Y, et al. Novel substituted heteroaromatic piperazine and piperidine derivatives as inhibitors of human enterovirus 71 and coxsackievirus a16. Molecules. 2013;18(5):5059-5071. https://doi:10.3390/molecules18055059
  • Zhao S, Huang JJ, Sun X, Huang X, Fu S, Yang L, Liu XW, He F, Deng Y. (1-aryloxy-2-hydroxypropyl)-phenylpiperazine derivatives suppress Candida albicans virulence by interfering with morphological transition. Microb Biotechnol. 2018;11(6):1080-1089. https://doi:10.1111/1751-7915.13307
  • Filipova A, Marek J, Havelek R, Pejchal J, Jelicova M, Cizkova J, et al. Substituted Piperazines as Novel Potential Radioprotective Agents. Molecules. 2020;25(3):532. https://doi:10.3390/molecules25030532
  • Marcinkowska M, Kotańska M, Zagórska A, et al. Synthesis and biological evaluation of N-arylpiperazine derivatives of 4,4-dimethylisoquinoline-1,3(2H,4H)-dione as potential antiplatelet agents. J Enzyme Inhib Med Chem. 2018;33(1):536-545. https://doi:10.1080/14756366.2018.1437155
  • Kaczor AA, Targowska-Duda KM, Silva AG, Kondej M, Biała G, Castro M. N-(2-Hydroxyphenyl)-1-[3-(2-oxo-2,3-dihydro-1H- benzimidazol-1-yl)propyl]piperidine-4-Carboxamide (D2AAK4), a Multi-Target Ligand of Aminergic GPCRs, as a Potential Antipsychotic. Biomolecules. 2020;10(2):349. https://doi:10.3390/biom10020349
  • Rathore A, Asati V, Kashaw SK, Agarwal S, Parwani D, Bhattacharya S, Mallick C. The Recent Development of Piperazine and Piperidine Derivatives as Antipsychotic Agents. Mini Rev Med Chem. 2021;21(3):362-379. https://doi:10.2174/1389557520666200910092327