Extracellular vesicles and lyophilization: getting functionally stable cell-free biomedical products
Abay Baigenzhin 1,
Elmira Chuvakova 2,
Aigerim Zhakupova 3 * ,
Aizhan Akhayeva 3,
Anastasia Ganina 3 More Detail
1 Chairman of the Board, JSC “National Scientific Medical Center”, Astana, Kazakhstan
2 Deputy of Science, JSC “National Scientific Medical Center”, Astana, Kazakhstan
3 Department of Cell Technologies and Transplantation, JSC “National Scientific Medical Center”, Astana, Kazakhstan
* Corresponding Author
OPEN ACCESS
59 Views
103 Downloads
Author Contributions: A.B., E.C., A.Zh., A.A., and A.G. – conception of the work; A.Zh., A.A. – reviewing literature, writing the draft; A.Zh. – visualization; A.B., E.C., A.A., A.Zh., and A.G. – revision of final version. All authors reviewed and approved the final manuscript for submission.
Data availability statement: The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding author.
AI Usage Statement: Not applicable.
ABSTRACT
During the last decade, clinical application of extracellular vesicles (EVs) is of growing interest. Despite the progress in exploring the therapeutic potential of EVs, e.g. as disease markers or the carriers for therapeutic substances, it is important to identify proper storage conditions – this issue is indeed challenging. A subtype of EVs known as exosomes is of great importance in the therapeutic applications because they participate in the regulation of intercellular communication. Currently, exosomes are considered as a promising tool in the regenerative medicine. The therapeutic potential of exosomes and other subtypes of EVs, especially for their using in immunomodulation and drug delivery, dictates great attention to the methods for their storage, in particular for a long periods of time. Lyophilization is one of the best such methods designed to preserve cell-free EV-based products. In our mini-review, we discuss the main methods developed for stabilizing cell-free products and getting stable solid forms of EVs that are capable for long-term storage. We also point out that the methods need to be following both the ease of transportation and the retaining the functionally important properties for in vivo applications. The development of optimal protocols for storing the EVs are therefore crucially important for warranting that structural and functional integrity of EVs, exosomes in particular, are maintained intact or at least modified as less as possible. For comprehensiveness of our review, we refer to original studies which investigated how the storage temperature and freezing methods may affect stability of the final EV product. We summarize advances in the area of freeze-drying EVs (exosomes), the selection of optimal process parameters and lyoprotectants, the interplay between lyophilization parameters and specific functional properties of exosomes, and the preservation of their biological activity after reconstitution before application in vivo.
CITATION
Baigenzhin A, Chuvakova E, Zhakupova A, Akhayeva A, Ganina A. Extracellular vesicles and lyophilization: getting functionally stable cell-free biomedical products. J Clin Med Kaz. 2025.
https://doi.org/10.23950/jcmk/17533
REFERENCES
- Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):27. https://doi.org/10.1038/s41392-024-01735-1
- Сheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov. 2022;21:379-399. https://doi.org/10.1038/s41573-022-00410-w
- Bahr MM, Amer MS, Abo-El-Sooud K, Abdallah AN, El-Tookhy OS. Preservation techniques of stem cells extracellular vesicles: a gate for manufacturing of clinical grade therapeutic extracellular vesicles and long-term clinical trials. Int J Vet Sci Med. 2020;8(1):1-8. https://doi.org/10.1080/23144599.2019.1704992
- Susa F, Limongi T, Borgione F, Peiretti S, Vallino M, Cauda V, Pisano R. Comparative Studies of Different Preservation Methods and Relative Freeze-Drying Formulations for Extracellular Vesicle Pharmaceutical Applications. ACS Biomater Sci Eng. 2023;9(10):5871-5885. https://doi.org/10.1021/acsbiomaterials.3c00678
- Yuan F, Li YM, Wang Z. Preserving extracellular vesicles for biomedical applications: consideration of storage stability before and after isolation. Drug Deliv. 2021;28(1):1501-1509. https://doi.org/10.1080/10717544.2021.1951896
- Romanov YA, Volgina NE, Dugina TN, Kabaeva NV, Sukhikh GT. Effect of Storage Conditions on the Integrity of Human Umbilical Cord Mesenchymal Stromal Cell-Derived Microvesicles. Bull Exp Biol Med. 2019;167(1):131-135. https://doi.org/10.1007/s10517-019-04476-2
- Shao S, Fang H, Li Q, Wang G. Extracellular vesicles in Inflammatory Skin Disorders: from Pathophysiology to Treatment. Theranostics. 2020;10(22):9937-9955. https://doi.org/10.7150/thno.45488
- Latipbayeva M, Askarov M, Seisembekov T, Baigenzhin A, Kupenov B, Tolegenuly A, Zakarina D, Mansharipova A, Akhayeva A, Kussaiynkhan G. Study of the Efficacy of Autologous Cell Therapy in Dilated Cardiomyopathy. J Clin Med Kaz. 2025;22(4):37-46. https://doi.org/10.23950/jcmk/16589
- Yeltokova M, Аkhmedyanova Z, Bayanbayeva Z, Khassenova A, Yermekova K. The use of autologous mesenchymal stem cells in complications of diabetes mellitus, in particular diabetic retinopathy: inputs and insights. J Clin Med Kaz. 2022;19(2):9-13. https://doi.org/10.23950/jcmk/11938
- Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, Ai J, Banafshe HR, Ebrahimi-Barough S. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem. 2018;119(10):8048-8073. https://doi.org/10.1002/jcb.26726
- Ahmadian S, Jafari N, Tamadon A, Ghaffarzadeh A, Rahbarghazi R, Mahdipour M. Different storage and freezing protocols for extracellular vesicles: a systematic review. Stem Cell Res Ther. 2024;15(1):453. https://doi.org/10.1186/s13287-024-04005-7
- El Baradie KBY, Nouh M, O'Brien Iii F, Liu Y, Fulzele S, Eroglu A, Hamrick MW. Freeze-Dried Extracellular Vesicles From Adipose-Derived Stem Cells Prevent Hypoxia-Induced Muscle Cell Injury. Front Cell Dev Biol. 2020;8:181. https://doi.org/10.3389/fcell.2020.00181
- Trenkenschuh E, Richter M, Heinrich E, Koch M, Fuhrmann G, Friess W. Enhancing the Stabilization Potential of Lyophilization for Extracellular Vesicles. Adv Healthc Mater. 2022;11(5):e2100538. https://doi.org/10.1002/adhm.202100538
- Lei X, Ring S, Jin S, Singh S, Mahnke K. Extracellular Vesicles and Their Role in Skin Inflammatory Diseases: From Pathogenesis to Therapy. Int J Mol Sci. 2025;26(8):3827. https://doi.org/10.3390/ijms26083827
- Li Z, Yan J, Li X, Chen H, Lin C, Zhang Y, Gao T, Zhang Y, Shu Y, Pan S, Zhang Y. Advancements in extracellular vesicles biomanufacturing: a comprehensive overview of large-scale production and clinical research. Front Bioeng Biotechnol. 2025;13:1487627. https://doi.org/10.3389/fbioe.2025.1487627
- Yu H, Feng H, Zeng H, Wu Y, Zhang Q, Yu J, Hou K, Wu M. Exosomes: The emerging mechanisms and potential clinical applications in dermatology. Int J Biol Sci. 2024;20(5):1778-1795. https://doi.org/10.7150/ijbs.92897
- Cardoso RMS, Rodrigues SC, Gomes CF, Duarte FV, Romao M, Leal EC, Freire PC, Neves R, Simões-Correia J. Development of an optimized and scalable method for isolation of umbilical cord blood-derived small extracellular vesicles for future clinical use. Stem Cells Transl Med. 2021;10(6):910-921. https://doi.org/10.1002/sctm.20-0376
- Izutsu KI. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations. Adv Exp Med Biol. 2018;1081:371-383. https://doi.org/10.1007/978-981-13-1244-1_20
- Guarro M, Suñer F, Lecina M, Borrós S, Fornaguera C. Efficient extracellular vesicles freeze-dry method for direct formulations preparation and use. Colloids Surf B Biointerfaces. 2022;218:112745. https://doi.org/10.1016/j.colsurfb.2022.112745
- Centner CS, Murphy EM, Priddy MC, Moore JT, Janis BR, Menze MA, DeFilippis AP, Kopechek JA. Ultrasound-induced molecular delivery to erythrocytes using a microfluidic system. Biomicrofluidics. 2020;14(2):024114. https://doi.org/10.1063/1.5144617
- Liu Q, Wu J, Wang H, Jia Z, Li G. Human Infrapatellar Fat Pad Mesenchymal Stem Cell-derived Extracellular Vesicles Purified by Anion Exchange Chromatography Suppress Osteoarthritis Progression in a Mouse Model. Clin Orthop Relat Res. 2024;482(7):1246-1262. https://doi.org/10.1097/CORR.0000000000003067
- Kusuma GD, Barabadi M, Tan JL, Morton DAV, Frith JE, Lim R. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front Pharmacol. 2018;9:1199. https://doi.org/10.3389/fphar.2018.01199
- Golan ME, Stice SL. Extracellular vesicle lyophilization for enhanced distribution to the point of care. Extracellular Vesicle, 2024;3:100041. https://doi.org/10.1016/j.vesic.2024.100041
- Kang WY, Shin EK, Kim EH, Kang MH, Bang CY, Bang OY, Cha JM. Lyoprotectant Constituents Suited for Lyophilization and Reconstitution of Stem-Cell-Derived Extracellular Vesicles. Biomater Res. 2024;28:0005. https://doi.org/10.34133/bmr.0005
- Manchon E, Hirt N, Bouaziz JD, Jabrane-Ferrat N, Al-Daccak R. Stem Cells-Derived Extracellular Vesicles: Potential Therapeutics for Wound Healing in Chronic Inflammatory Skin Diseases. Int J Mol Sci. 2021;22(6):3130. https://doi.org/10.3390/ijms22063130
- Bari E, Perteghella S, Di Silvestre D, Sorlini M, Catenacci L, Sorrenti M, Marrubini G, Rossi R, Tripodo G, Mauri P, Marazzi M, Torre ML. Pilot Production of Mesenchymal Stem/Stromal Freeze-Dried Secretome for Cell-Free Regenerative Nanomedicine: A Validated GMP-Compliant Process. Cells. 2018;7(11):190. https://doi.org/10.3390/cells7110190
- Rodrigues SC, Cardoso RMS, Freire PC, Gomes CF, Duarte FV, Neves RPD, Simões-Correia J. Immunomodulatory Properties of Umbilical Cord Blood-Derived Small Extracellular Vesicles and Their Therapeutic Potential for Inflammatory Skin Disorders. Int J Mol Sci. 2021;22(18):9797. https://doi.org/10.3390/ijms22189797
- Miyamoto Y, Ikeuchi M, Noguchi H, Hayashi S. Long-term Cryopreservation of Human and other Mammalian Cells at -80 °C for 8 Years. Cell Med. 2018;10:2155179017733148. https://doi.org/10.1177/2155179017733148
- Bajerski F, Nagel M, Overmann J. Microbial occurrence in liquid nitrogen storage tanks: a challenge for cryobanking? Appl Microbiol Biotechnol. 2021;105(20):7635-7650. https://doi.org/10.1007/s00253-021-11531-4
- Lyu N, Knight R, Robertson SYT, Dos Santos A, Zhang C, Ma C, Xu J, Zheng J, Deng SX. Stability and Function of Extracellular Vesicles Derived from Immortalized Human Corneal Stromal Stem Cells: A Proof of Concept Study. AAPS J. 2022;25(1):8. https://doi.org/10.1208/s12248-022-00767-1
- van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-228. https://doi.org/10.1038/nrm.2017.125
- Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, Fissell WH, Patton JG, Rome LH, Burnette DT, Coffey RJ. Reassessment of Exosome Composition. Cell. 2019;177(2):428-445.e18. https://doi.org/10.1016/j.cell.2019.02.029
- Pluchino S, Smith JA. Explicating Exosomes: Reclassifying the Rising Stars of Intercellular Communication. Cell. 2019;177(2):225-227. https://doi.org/10.1016/j.cell.2019.03.020
- Meldolesi J. Exosomes and Ectosomes in Intercellular Communication. Curr Biol. 2018;28(8):R435-R444. https://doi.org/10.1016/j.cub.2018.01.059
- You B, Yang Y, Zhou Z, Yan Y, Zhang L, Jin J, Qian H. Extracellular Vesicles: A New Frontier for Cardiac Repair. Pharmaceutics. 2022;14(9):1848. https://doi.org/10.3390/pharmaceutics14091848
- Omoto ACM, do Carmo JM, da Silva AA, Hall JE, Mouton AJ. Immunometabolism, extracellular vesicles and cardiac injury. Front Endocrinol (Lausanne). 2024;14:1331284. https://doi.org/10.3389/fendo.2023.1331284
- Monroe DG, Javeed N, Rowsey JL, Ruan M, McCabe CE, Piatkowski BT, Roy A, Bobbili MR, Grillari J, Khosla S. Isolation and characterization of bone mesenchymal cell small extracellular vesicles using a novel mouse model. J Bone Miner Res. 2024;39(11):1633-1643. https://doi.org/10.1093/jbmr/zjae135
- Urabe F, Kosaka N, Ito K, Kimura T, Egawa S, Ochiya T. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am J Physiol Cell Physiol. 2020;318(1):C29-C39. https://doi.org/10.1152/ajpcell.00280.2019
- Buratta S, Tancini B, Sagini K, Delo F, Chiaradia E, Urbanelli L, Emiliani C. Lysosomal Exocytosis, Exosome Release and Secretory Autophagy: The Autophagic- and Endo-Lysosomal Systems Go Extracellular. Int J Mol Sci. 2020;21(7):2576. https://doi.org/10.3390/ijms21072576
- Budgude P, Kale V, Vaidya A. Cryopreservation of mesenchymal stromal cell-derived extracellular vesicles using trehalose maintains their ability to expand hematopoietic stem cells in vitro. Cryobiology. 2021;98:152-163. https://doi.org/10.1016/j.cryobiol.2020.11.009
- Amari L, Germain M. Mitochondrial Extracellular Vesicles - Origins and Roles. Front Mol Neurosci. 2021;14:767219. https://doi.org/10.3389/fnmol.2021.767219
- Liu Q, Li S, Dupuy A, Mai HL, Sailliet N, Logé C, Robert JH, Brouard S. Exosomes as New Biomarkers and Drug Delivery Tools for the Prevention and Treatment of Various Diseases: Current Perspectives. Int J Mol Sci. 2021;22(15):7763. https://doi.org/10.3390/ijms22157763
- Hosseini M, Roshangar L, Raeisi S, Ghahremanzadeh K, Negargar S, Tarmahi V, Hosseini V, Raeisi M, Rahimi E, Ebadi Z. The Therapeutic Applications of Exosomes in Different Types of Diseases: A Review. Curr Mol Med. 2021;21(2):87-95. https://doi.org/10.2174/1566524020666200610164743
- Zhang F, Lu X, Zhu X, Yu Z, Xia W, Wei X. Real-time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry. J Extracell Vesicles. 2024;13(10):e70003. https://doi.org/10.1002/jev2.70003
- Wang Y, Yuan S, Zhou L, Yang K, Jin Z, Lin A, Yang C, Tian W. Cutting-Edge Progress in the Acquisition, Modification and Therapeutic Applications of Exosomes for Drug Delivery. Int J Nanomedicine. 2025;20:5059-5080. https://doi.org/10.2147/IJN.S516840
- Qazi REM, Sajid Z, Zhao C, Hussain I, Iftikhar F, Jameel M, Rehman FU, Mian AA. Lyophilization Based Isolation of Exosomes. Int J Mol Sci. 2023;24(13):10477. https://doi.org/10.3390/ijms241310477
- Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance. J Pharm Sci. 2019;108(4):1378-1395. https://doi.org/10.1016/j.xphs.2018.11.039
- Jafari A, Mirzaei Y, Mer AH, Rezaei-Tavirani M, Jafari Z, Niknejad H. Comparison of the effects of preservation methods on structural, biological, and mechanical properties of the human amniotic membrane for medical applications. Cell Tissue Bank. 2024;25(1):305-323. doi: 10.1007/s10561-023-10114-z
- Aijaz M, Ahmad S, Alam S. Regenerative Medicine Unveiled: Principles, Technologies, and Clinical Breakthroughs in Tissue Regeneration. J Clin Med Kaz. 2025;22(5):105-118. doi: 10.23950/jcmk/16880
- Alexeenko AA, Darwish A, Strongrich D, Kazarin P, Patil C, Tower CW, Wheeler IS, Munson E, Zhou Q, Narsimhan V, Yoon K, Nail SL, Cofer A, Stanbro J, Renawala H, Roth D, DeMarco F, Griffiths J, Peroulis D. Randomized-field microwave-assisted pharmaceutical lyophilization with closed-loop control. Sci Rep. 2025;15(1):10536. doi: 10.1038/s41598-025-91642-4
- Oriaku I, Okechukwu O, Okeoma OI, Gab-Obinna C, Bala JI, Adejumobi AM, Awoyomi OO. Artificial Intelligence in Transfusion Medicine: Current Applications, Opportunities, and Challenges. Epidemiology and Health Data Insights. 2025;1(6):ehdi023. doi: 10.63946/ehdi/17470
- Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev. 2023;199:114974. doi: 10.1016/j.addr.2023.114974
- Picchio V, Pontecorvi V, Dhori X, Bordin A, Floris E, Cozzolino C, Frati G, Pagano F, Chimenti I, De Falco E. The emerging role of artificial intelligence applied to exosome analysis: from cancer biology to other biomedical fields. Life Sci. 2025;375:123752. doi: 10.1016/j.lfs.2025.123752