Low renin forms of monogenic hypertension: review of the evidence

Ugochi Chinenye Okorafor 1 * , Uchechi Chioma Okorafor 2
More Detail
1 Department of Cardiology, Meridian Cardiac Center, Festac Town, Lagos, Nigeria
2 Department of Medicine and Surgery, College of Medicine, University of Ibadan, University Of Ibadan, Ibadan, Nigeria
* Corresponding Author
J CLIN MED KAZ, Volume 21, Issue 1, pp. 14-20. https://doi.org/10.23950/jcmk/14269
OPEN ACCESS 329 Views 247 Downloads
Download Full Text (PDF)
Author Contributions
Conceptualization, Ug. C. O.; methodology, Ug. C. O.; validation – not applicable; formal analysis, – not applicable; investigation, Ug. C. O. and Uch. C. O; resources research, Ug. C. O., Uch. C. O.; data curation – not applicable; writing – original draft preparation, Ug. C. O.; writing – review and editing, Ug. C. O.; visualization, – not applicable; supervision – not applicable; project administration – not applicable; funding acquisition – not applicable. The authors have read and agreed to the published version of the manuscript.


Background: Monogenic hypertension syndromes result from a single genetic mutation and present with severe, refractory hypertension, distinct laboratory abnormalities, and a positive family history. These syndromes are often unrecognized or misdiagnosed as essential hypertension, thus preventing proper treatment. The rise of molecular genetics has brought these conditions to the limelight, and physicians must be kept abreast of the latest in this field. This paper aims to educate doctors to recognize and institute appropriate management early to prevent end-organ damage.
Discussion: These syndromes all affect sodium transport in the distal nephron of the kidneys. However, they are divided based on the location of the primary disorder, i.e., the adrenal glands or the distal nephron and discussed in that manner. Tables provide an overview of the different syndromes and provide essential information in a snapshot.
Conclusion: The widespread availability of genetic testing facilities will aid in the earlier diagnosis of these conditions to prevent morbidity.


Okorafor UC, Okorafor UC. Low renin forms of monogenic hypertension: review of the evidence. J CLIN MED KAZ. 2024;21(1):14-20. https://doi.org/10.23950/jcmk/14269


  • Buffolo F, Monticone S, Pecori A, Pieroni J, Losano I, Cavaglià G, et al. The spectrum of low-renin hypertension. Best Pract Res Clin Endocrinol Metab. 2020 May 1; 34(3):101399. https://doi.org/10.1016/j.beem.2020.101399.
  • Zöller B, Manderstedt E, Lind-Halldén C, Halldén C. Rare-variant collapsing analyses of arterial hypertension in the UK biobank. J Hum Hypertens. 2023: 1-3. https://doi.org/10.1038/s41371-023-00829-7.
  • Zhou B, Perel P, Mensah GA, Ezzati M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat Rev Cardiol. 2021; 18(11): 785-802. https://doi.org/10.1038/s41569-021-00559-8.
  • Mamdouh H, Alnakhi WK, Hussain HY, Ibrahim GM, Hussein A, Mahmoud I, et al. Prevalence and associated risk factors of hypertension and pre-hypertension among the adult population: findings from the Dubai Household Survey, 2019. BMC Cardiovasc Disord. 2022; 22(1): 1-9. https://doi.org/10.1186/s12872-022-02457-4.
  • Lu YT, Fan P, Zhang D, Zhang Y, Meng X, Zhang QY, et al. Overview of Monogenic Forms of Hypertension Combined With Hypokalemia. Front Pediatr. 2021; 8: 543309. https://doi.org/10.3389/fped.2020.543309
  • Padmanabhan S, Dominiczak AF. Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol. 2021; 18(4): 235-50. https://doi.org/10.1038/s41569-020-00466-4
  • Boder P, Mary S, Mark PB, Leiper J, Dominiczak AF, Padmanabhan S, et al. Mechanistic interactions of uromodulin with the thick ascending limb: perspectives in physiology and hypertension. J Hypertens. 2021; 39(8): 1490-504. https://doi.org/10.1097%2FHJH.0000000000002861. PMID: 34187999 PMCID: PMC7611110
  • Yadav M, Sinha A, Hari P, Bagga A. Impaired Distal Tubular Acidification, Renal Cysts and Nephrocalcinosis in Monogenic Hypertension. Indian J Pediatr. 2021 Jun 1; 88(6): 579–81. https://doi.org/10.1007/s12098-020-03516-4.
  • Precone V, Krasi G, Guerri G, Stuppia L, Romeo F, Perrone M, et al. Monogenic hypertension. Acta Bio Medica: Atenei Parmensis. 2019; 90 (10): 50-52. https://doi.org/10.23750%2Fabm.v90i10-S.8759. PMID: 31577254 PMCID: PMC7233634
  • Lalji R, Tullus K. Causes of Secondary Hypertension in Children and Adolescents. In: Lurbe E, Wühl E, editors. Hypertension in Children and Adolescents. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. 2019. p. 111-30 https://doi.org/10.1007/978-3-030-18167-3_8.
  • Lin YF, Peng KY, Chang CH, Hu YH, Wu VC, Chueh JS, et al. Adrenalectomy Completely Cured Hypertension in Patients with Familial Hyperaldosteronism Type i Who Had Somatic KCNJ5 Mutation. J Clin Endocrinol Metab. 2019 Nov 1; 104(11): 5462–6. https://doi.org/10.1210/jc.2019-00689.
  • Raina R, Krishnappa V, Das A, Amin H, Radhakrishnan Y, Nair NR, et al. Overview of monogenic or Mendelian forms of hypertension. Front Pediatr. 2019 Jul 1; 7: 263. https://doi.org/10.3389/fped.2019.00263.
  • Levanovich PE, Diaczok A, Rossi NF. Clinical and Molecular Perspectives of Monogenic Hypertension. Curr Hypertens Rev. 2020; 16(2): 91–107. https://doi.org/10.2174/1573402115666190409115330. PMID: 30963979 PMCID: PMC7499356.
  • Sanga V, Seccia TM, Rossi GP. A systematic review of pathophysiology and management of familial hyperaldosteronism type 1 in pregnancy. Endocrine. 2021 Oct; 74(1): 5-10. https://doi.org/10.1007/s12020-021-02763-5.
  • Stowasser M, Wolley M, Wu A, Gordon RD, Schewe J, Stölting G, et al. Pathogenesis of familial hyperaldosteronism type II: new concepts involving anion channels. Curr Hypertens Rep. 2019 Apr;21:1-0. https://doi.org/10.1007/s11906-019-0934-y.
  • Park SJ, Shin JI. Diagnosis and Treatment of Monogenic Hypertension in Children. Yonsei Med J. 2023 Feb;64(2):77. https://doi.org/10.3349%2Fymj.2022.0316. PMID: 36719014. PMCID: PMC9892546.
  • Garg AK, Parajuli P, Mamillapalli CK. Pregnancy complicated by hypertension and hypokalemia. American Journal of Kidney Diseases. 2020 Oct 1; 76(4): A21-2. https://doi.org/10.1053/j.ajkd.2020.04.012.
  • Seidel E, Schewe J, Scholl UI. Genetic causes of primary aldosteronism. Exp Mol Med. 2019; 51(11): 1-2. https://doi.org/10.1038/s12276-019-0337-9.
  • Pecori A, Monticone S, Losano I, Cavaglià G, Pieroni J, Veglio F, Mulatero. Familial Hyperaldosteronism. In: Morganti A, Agabiti Rosei E, Mantero F. editors. Secondary Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. 2020. p. 79-93. https://doi.org/10.1007/978-3-030-45562-0_5.
  • Sanga V, Lenzini L, Seccia TM, Rossi GP. Familial hyperaldosteronism type 1 and pregnancy: successful treatment with low dose dexamethasone. Blood Press. 2021; 30(2): 133–7. https://doi.org/10.1080/08037051.2020.1863771.
  • He X, Modi Z, Else T. Hereditary causes of primary aldosteronism and other disorders of apparent excess mineralocorticoid activity. Gland Surg. 2020; 9(1):150. https://doi.org/10.21037%2Fgs.2019.11.20. PMID: 32206607 PMCID: PMC7082269.
  • Pons Fernández N, Moreno F, Morata J, Moriano A, León S, De Mingo C, et al. Familial hyperaldosteronism type III a novel case and review of literature. Rev Endocr Metab Disord. 2019; 20: 27-36. https://doi.org/10.1007/s11154-018-9481-0.
  • Garofalidou T, Munroe PB. Molecular pathophysiology of systemic hypertension. In: Clinical Molecular Medicine: Principles and Practice. Elsevier; 2019. p. 169–87. https://doi.org/10.1016/B978-0-12-809356-6.00011-3.
  • Alam S, Goyal A, Kandasamy D, Bansal VK, Asuri K, Agarwal S, et al. Resistant Hypertension Due to Familial Hyperaldosteronism Type III: First Report From Indian Sub-Continent. J Endocrine Soc. 2021; 5 (1): A115-6. https://doi.org/10.1210/jendso/bvab048.314.
  • Takizawa N, Tanaka S, Nishimoto K, Sugiura Y, Suematsu M, Ohe C, et al. Familial Hyperaldosteronism Type 3 with a Rapidly Growing Adrenal Tumor: An In Situ Aldosterone Imaging Study. Curr Issues Mol Biol. 2022; 44(1): 128–38. https://doi.org/10.3390/cimb44010010.
  • Mashmoushi A, Wolf MTF. A narrative review of Hyporeninemic hypertension-an indicator for monogenic forms of hypertension. Pediatric Med. 2022; 5: 21. https://doi.org/10.21037%2Fpm-21-48. PMID: 36325202.
  • Mourtzi N, Sertedaki A, Markou A, Piaditis GP, Charmandari E. Unravelling the Genetic Basis of Primary Aldosteronism. Nutrients. 2021; 13(3): 875. https://doi.org/10.3390/nu13030875.
  • Raina R, Mahajan Z, Sharma A, Chakraborty R, Mahajan S, Sethi SK, et al. Hypertensive Crisis in Pediatric Patients: An Overview. Front Pediatr. Frontiers Media S.A.; 2020; 8: 588911. https://doi.org/10.3389/fped.2020.588911.
  • van der Grinten HLC, Speiser PW, Faisal Ahmed S, Arlt W, Auchus RJ, Falhammar H, et al. Congenital Adrenal Hyperplasia—Current Insights in Pathophysiology, Diagnostics, and Management. Endocr Rev. Endocrine Society; 2022; 43(1): 91–159. https://doi.org/10.1210/endrev/bnab016.
  • Nordenström A, Lajic S, Falhammar H. Long-Term Outcomes of Congenital Adrenal Hyperplasia. Endocrinol Metab (Seoul). Korean Endocrine Society; 2022; 37(4): 587-98. https://doi.org/10.3803/EnM.2022.1528.
  • Athimulam S, Lazik N, Bancos I. Low-Renin Hypertension. Endocrinol Metab Clin North Am. 2019; 48(4): 701-15. https://doi.org/10.1016/j.ecl.2019.08.003.
  • Tosun BG, Guran T. Congenital adrenal hyperplasia and hypertension. In: Endocrine Hypertension: From Basic Science to Clinical Practice. Elsevier; 2022. p. 113–25. https://doi.org/10.1016/B978-0-323-96120-2.00015-7.
  • Khandelwal P, Deinum J. Monogenic forms of low-renin hypertension: clinical and molecular insights. Pediatr Nephrol. 2022; 37(7): 1495–509. https://doi.org/10.1007/s00467-021-05246-x.
  • Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol. 2021; 530: 111277. https://doi.org/10.1016/j.mce.2021.111277.
  • Kozina AA, Trofimova TA, Okuneva EG, Baryshnikova N V., Obuhova VA, Krasnenko AY, et al. Liddle syndrome due to a novel mutation in the γsubunit of the epithelial sodium channel (ENaC) in family from Russia: A case report. BMC Nephrol. 2019; 20(1): 389. https://doi.org/10.1186/s12882-019-1579-4.
  • Allen GT, Shipman AR, Darragh-Hickey C, Flowers KC, Kaur S, Shipman KE. Investigative algorithms for disorders affecting alkalosis: a narrative review. J Lab Precis Med. 2022; 7. https://doi.org/10.21037/jlpm-22-8.
  • Lu YT, Liu XC, Zhou ZM, Zhang D, Sun L, Zhang Y, et al. A Novel Frame-Shift Mutation in SCNN1B Identified in a Chinese Family Characterized by Early-Onset Hypertension. Front Cardiovasc Med. 2022; 9: 896564. https://doi.org/10.3389/fcvm.2022.896564.
  • Enslow BT, Stockand JD, Berman JM. Liddle’s syndrome mechanisms, diagnosis and management. Integrated Blood Pressure Control. 2019: 13-22. https://doi.org/10.2147/IBPC.S188869.
  • Aksoy OY, Bastug F, Celik B, Uytun S. Hypokalemia and hypertensive urgency in a 10-year-old boy: Questions. Pediatr Nephrol. 2021; 36(11): 3627–8. https://doi.org/10.1007/s00467-021-05058-z.
  • Mareš Š, Filipovský J, Vlková K, Pešta M, Černá V, Hrabák J, et al. A novel nonsense mutation in the β-subunit of the epithelial sodium channel causing Liddle syndrome. Blood Press. 2021; 30(5): 291–9. https://doi.org/10.1080/08037051.2021.1942785.
  • Qu Y, Lu Y, Zhang D, Liu X, Fan P, Chen J, et al. Identification of a novel frameshift mutation in the SCNN1B causing Liddle syndrome. Sci Bull (Beijing). 2023; 68(4): 383–7. https://doi.org/10.1016/j.scib.2023.02.006. PMID: 36774301.
  • Akram S, Rehman A, Khan MA. Liddle Syndrome in a Six-Year-Old Girl: A Case Report. Journal of Islamabad Medical & Dental College. 2021; 10(2): 116–9. https://doi.org/10.35787/jimdc.v10i2.642.
  • Steyn N, Chale-Matsau B, Abera AB, Van Biljon G, Pillay TS. Neonatal presentation of a patient with Liddle syndrome, South Africa. Afr J Lab Med. 2023; 12(1):1-6. https://dx.doi.org/10.4102/ajlm.v12i1.1998.
  • Brower RK, Ghlichloo IA, Shabgahi V, Elsholz D, Menon RK, Vyas AK. Liddle Syndrome due to a Novel c.1713 Deletion in the Epithelial Sodium Channel β-Subunit in a Normotensive Adolescent. AACE Clin Case Rep. 2021; 7(1): 65–8. https://doi.org/10.1016/j.aace.2020.11.017.
  • Yang Y, Wu C, Qu D, Xu X, Chen L, Sun Q, et al. Liddle syndrome misdiagnosed as primary aldosteronism is caused by inaccurate aldosterone-rennin detection while a novel SCNN1G mutation is discovered. Blood Press. 2022; 31(1): 139–45. https://doi.org/10.1080/08037051.2022.2088471.
  • Teoh Z, Shah S. A case report of three children with secondary hypertension caused by Liddle syndrome. Clin Nephrol Case Stud. 2020; 8(01): 37–40. https://doi.org/10.5414%2FCNCS109972.
  • Pratamawati TM, Alwi I. Summary of Known Genetic and Epigenetic Modification Contributed to Hypertension. International Journal of Hypertension. 2023; 2023. https://doi.org/10.1155/2023/5872362.
  • Mabillard H, Sayer JA. The molecular genetics of gordon syndrome. Genes (Basel). 2019; 10(12): 986. https://doi.org/10.3390/genes10120986.
  • Asadi S. The Role Of Genetic Mutations In Genes WNK1,WNK4, CUL3, KLHL3 In Gordon’s Syndrome. Journal of Genetics and Genetic Engineering. 2019; 3(1): 18–21. https://doi.org/10.3390/genes10120986.
  • Hindosh N, Hindosh R, Dada B, Bal S. Geller Syndrome: A Rare Cause of Persistent Hypokalemia During Pregnancy. Cureus. 2022; 14(6). https://doi.org/10.7759/cureus.26272.
  • Carvajal CA, Tapia-Castillo A, Vecchiola A, Baudrand R, Fardella CE. Classic and nonclassic apparent mineralocorticoid excess syndrome. J Clin Endocrinol Metab. 2020; 105(4): e924-36. https://doi.org/10.1210/clinem/dgz315.
  • Fan P, Lu YT, Yang KQ, Zhang D, Liu XY, Tian T, et al. Apparent mineralocorticoid excess caused by novel compound heterozygous mutations in HSD11B2 and characterized by early-onset hypertension and hypokalemia. Endocrine. 2020; 70(3): 607–15. https://doi.org/10.1007/s12020-020-02460-9.
  • Albalawi AD, Al-Issa SD, AlHissi MA, Aljurayyan AN, Khoder JJ, Al-Jurayyan NA. Hereditary forms of apparent mineralocorticoid excess (AME): Report of a further case and literature review. World J Biol Pharm Sci. 2023; 15(1):180–4. https://doi.org/10.30574/wjbphs.2023.15.1.0284.
  • Kucuk N, Yavas Abali Z, Abali S, Canpolat N, Yesil G, Turan S, et al. A rare cause of hypertension in childhood: Questions. Pediatr Nephrol. 2020; 35(1): 77–8. https://doi.org/10.1007/s00467-019-04326-3.
  • Verma S, Dabadghao P, Moirangthem A. Apparent mineralocorticoid excess - A rare cause of endocrine hypertension. Indian Pediatr Case Rep. 2022; 2(1): 36. https://doi.org/10.4103/ipcares.ipcares_312_21.
  • Lu YT, Zhang D, Zhang QY, Zhou ZM, Yang KQ, Zhou XL, et al. Apparent mineralocorticoid excess: comprehensive overview of molecular genetics. J Transl Med. BioMed Central Ltd. 2022; 20(1): 500. https://doi.org/10.1186/s12967-022-03698-9.