Regenerative Medicine Unveiled: Principles, Technologies, and Clinical Breakthroughs in Tissue Regeneration
Moh Aijaz 1 * ,
Shmmon Ahmad 2 * ,
Suhel Alam 3 More Detail
1 School of Pharmacy, Graphic Era Hill University, Dehradun, India.
2 M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
3 Department of Pathology, Maharishi Markandeshwar University, Mullana, Ambala, India
* Corresponding Author
J CLIN MED KAZ, Volume 22, Issue 5, pp. 105-118.
https://doi.org/10.23950/jcmk/16880
OPEN ACCESS
1044 Views
239 Downloads
Author Contributions: Conceptualization, M. A.; methodology, M. A. and S. A.; validation, A. S. and S. A.; formal analysis, M. A. and S. A.; investigation, M. A. and S. A.; resources, M. A. and A. S.; data curation, S. A. and M. A.; writing M. A., S. A and A. S. original draft preparation, M. A.; writing – review and editing, S. A.; visualization, A. S. and M. A.; supervision, M. A.; project administration, M. A. and S. A. All authors have read and agreed to the published version of the manuscript.
ABSTRACT
Regenerative medicine leads the way in healthcare innovation, harnessing the body's inherent regenerative abilities to transform treatment methods for tissue injuries. This review provides a thorough analysis of the core principles, historical development, and various elements that make up regenerative medicine. It explores crucial aspects like stem cells, biomaterials, tissue engineering techniques, gene therapy, small molecules, and biologics, clarifying their functions and possible uses in tissue repair and regeneration. This review examines the newest progress in regenerative medicine influenced by innovative technologies, highlighting their transformative effects on the discipline. It also examines the path of regenerative medicine from research findings to successful clinical applications, emphasizing accomplishments, obstacles, and current efforts. Regulatory structures overseeing regenerative therapies, ethical issues related to their application, and future possibilities are thoroughly examined to offer a complete insight into the field. Through the integration of these varied elements, this review aims to provide readers with a detailed understanding of the current environment and future possibilities in tissue regeneration and repair. It highlights the capacity of regenerative medicine to transform healthcare models, presenting encouraging opportunities for tackling unfulfilled medical requirements and improving patient results.
CITATION
Aijaz M, Ahmad S, Alam S. Regenerative Medicine Unveiled: Principles, Technologies, and Clinical Breakthroughs in Tissue Regeneration. J CLIN MED KAZ. 2025;22(5):105-18.
https://doi.org/10.23950/jcmk/16880
REFERENCES
- Terzic A, Nelson TJ. Regenerative medicine primer. Mayo Clinic Proceedings. 2013;88(7):766-775. https://doi.org/10.1016/j.mayocp.2013.04.017
- Mason C. Regenerative medicine 2.0. Regenerative Medicine. 2007;2(1):11-18. https://doi.org/10.2217/17460751.2.1.11
- Gurtner GC, Callaghan MJ, Longaker MT. Progress and potential for regenerative medicine. Annual Review of Medicine. 2007;58:299-312. https://doi.org/10.1146/annurev.med.58.082405.095329
- Vacanti JP, Langer R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354(SUPPL.1):32-34. https://doi.org/10.1016/s0140-6736(99)90247-7
- Azuma K, Yamanaka S. Recent policies that support clinical application of induced pluripotent stem cell-based regenerative therapies. Regen Ther. 2016;4:36-47. https://doi.org/10.1016/j.reth.2016.01.009
- Aijaz M, Ahmad M, Ansari MA, Ahmad S, Kumar A. Tools and Techniques Used for the Development of Scaffold for Bone Tissue Regeneration: A Detailed Review. Bioint Res in App Chem. 2024;14:123. https://doi.org/10.33263/BRIAC145.123
- Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan G, et al. An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity. Advanced Science. 2023;10(20). https://doi.org/10.1002/advs.202207334
- Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduction and Targeted Therapy. 2024;9(1):112. https://doi.org/10.1038/s41392-024-01809-0
- Park SJ, Kim YY, Han JY, Kim SW, Kim H, Ku S-Y. Advancements in human embryonic stem cell research: clinical applications and ethical issues. Tissue Engineering and Regenerative Medicine. 2024;21(3):379-394. https://doi.org/10.1007/s13770-024-00627-3
- Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. https://doi.org/10.1186/s13287-019-1165-5
- Yu QR. Stem cells and cancer stem cells. Journal of Clinical Rehabilitative Tissue Engineering Research. 2007;11(15):2948-2951. https://doi.org/10.5892/intech.csc.2011.0328
- Foster CS, Dodson A, Karavana V, Smith PH, Ke Y. An introduction to stem cells. Journal of Pathology. 2002;197(4):419-423. https://doi.org/10.1002/path.1187
- Ude CC, Miskon A, Idrus RBH, Abu Bakar MB. Application of stem cells in tissue engineering for defense medicine. Military Medical Research. 2018;5(1):1-18. https://doi.org/10.1186/s40779-018-0154-9
- Cetrulo CL. Cord-blood mesenchymal stem cells and tissue engineering. Stem Cell Reviews. 2006 2:2. 2006;2(2):163-168. https://doi.org/10.1007/S12015-006-0023-X
- Bastami F, Nazeman P, Moslemi H, Rezai Rad M, Sharifi K, Khojasteh A. Induced pluripotent stem cells as a new getaway for bone tissue engineering: A systematic review. Cell Proliferation. 2017;50(2):e12321-e12321. https://doi.org/10.1111/cpr.12321
- Sharipol A, Lesch ML, Soto CA, Frisch BJ. Bone Marrow Microenvironment-On-Chip for Culture of Functional Hematopoietic Stem Cells. Frontiers in Bioengineering and Biotechnology. 2022;10. https://doi.org/10.3389/fbioe.2022.855777
- Bonnet C, González S, Roberts JAS, Robertson SYT, Ruiz M, Zheng J, et al. Human limbal epithelial stem cell regulation, bioengineering and function. Progress in Retinal and Eye Research. 2021;85. https://doi.org/10.1016/j.preteyeres.2021.100956
- Murray IR, Chahla J, Wordie SJ, Shapiro SA, Piuzzi NS, Frank RM, et al. Regulatory and Ethical Aspects of Orthobiologic Therapies. Orthopaedic Journal of Sports Medicine. 2022;10(11). https://doi.org/10.1177/23259671221101626
- Langridge B, Griffin M, Butler PE. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches. Journal of Materials Science: Materials in Medicine. 2021;32(1). https://doi.org/10.1007/s10856-020-06476-5
- Bhat S, Kumar A. Biomaterials in Regenerative Medicine. Journal of Postgraduate Medicine, Education and Research. 2012;46(2):81-89. https://doi.org/10.5005/jp-journals-10028-1018
- Zhang F, King MW. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Advanced Healthcare Materials. 2020;9(13):1901358-1901358. https://doi.org/10.1002/adhm.201901358
- Rahmati M, Pennisi CP, Budd E, Mobasheri A, Mozafari M. Biomaterials for regenerative medicine: Historical perspectives and current trends. Advances in Experimental Medicine and Biology. 2018;1119:1-19. https://doi.org/10.1007/5584_2018_278
- Huang NF, Zaitseva TS, Paukshto MV. Biomedical Applications of Collagen. Bioengineering. 2023;10(1). https://doi.org/10.3390/bioengineering10010090
- Zhang Y, Xu Y, Kong H, Zhang J, Chan HF, Wang J, et al. Microneedle system for tissue engineering and regenerative medicine. Exploration (Beijing). 2023;3(1):20210170. https://doi.org/10.1002/EXP.20210170
- Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus. 2012;2(3):366-377. https://doi.org/10.1098/rsfs.2011.0123
- Zheng S, Guan Y, Yu H, Huang G, Zheng C. Poly-l-lysine-coated PLGA/poly(amino acid)-modified hydroxyapatite porous scaffolds as efficient tissue engineering scaffolds for cell adhesion, proliferation, and differentiation. New Journal of Chemistry. 2019;43(25):9989-10002. https://doi.org/10.1039/c9nj01675a
- Jimenez Vazquez J, San Martín Martínez E. Collagen and elastin scaffold by electrospinning for skin tissue engineering applications. Journal of Materials Research. 2019;34(16):2819-2827. https://doi.org/10.1557/jmr.2019.233
- Yousefiasl S, Manoochehri H, Makvandi P, Afshar S, Salahinejad E, Khosraviyan P, et al. Chitosan/alginate bionanocomposites adorned with mesoporous silica nanoparticles for bone tissue engineering. Journal of Nanostructure in Chemistry. 2023;13(3):389-403. https://doi.org/10.1007/s40097-022-00507-z
- de Melo BAG, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomaterialia. 2020;117:60-76. https://doi.org/10.1016/j.actbio.2020.09.024
- Wilson RL, Swaminathan G, Ettayebi K, Bomidi C, Zeng XL, Blutt SE, et al. Protein-Functionalized Poly(ethylene glycol) Hydrogels as Scaffolds for Monolayer Organoid Culture. Tissue Engineering – Part C: Methods. 2021;27(1):12-23. https://doi.org/10.1089/ten.tec.2020.0306
- Fathi-Karkan S, Banimohamad-Shotorbani B, Saghati S, Rahbarghazi R, Davaran S. A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. J Biol Eng. 2022;16(1):6. https://doi.org/10.1186/s13036-022-00286-9
- Fooladi S, Nematollahi MH, Rabiee N, Iravani S. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications. ACS Biomaterials Science and Engineering. 2023;9(6):2949-2969. https://doi.org/10.1021/acsbiomaterials.3c00300
- Mohd Roslan MR, Mohd Kamal NL, Abdul Khalid MF, Mohd Nasir NF, Cheng EM, Beh CY, et al. The state of starch/hydroxyapatite composite scaffold in bone tissue engineering with consideration for dielectric measurement as an alternative characterization technique. Materials. 2021;14(8). https://doi.org/10.3390/ma14081960
- Huang K, Yang MS, Tang YJ, Ling SY, Pan F, Liu XD, et al. Porous shape memory scaffold of dextran and hydroxyapatite for minimum invasive implantation for bone tissue engineering applications. Journal of Biomaterials Applications. 2021;35(7):823-837. https://doi.org/10.1177/0885328220950062
- Sharma R, Kuche K, Thakor P, Bhavana V, Srivastava S, Mehra NK, et al. Chondroitin Sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohydrate Polymers. 2022;286. https://doi.org/10.1016/j.carbpol.2022.119305
- Taylor CS, Illangakoon U, Dawson JI, Kanczler JM, Behbehani M, Humphrey E, et al. Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS Applied Materials and Interfaces. 2021;13(28):32624-32639. https://doi.org/10.1021/acsami.0c19689
- Salati MA, Khazai J, Tahmuri AM, Samadi A, Taghizadeh A, Taghizadeh M, et al. Agarose-Based biomaterials: Opportunities and challenges in cartilage tissue engineering. Polymers. 2020;12(5). https://doi.org/10.3390/POLYM12051150
- Budak K, Sogut O, Aydemir Sezer U. A review on synthesis and biomedical applications of polyglycolic acid. Journal of Polymer Research. 2020;27(8):1-19. https://doi.org/10.1007/s10965-020-02187-1
- Gautam L, Warkar SG, Ahmad SI, Kant R, Jain M. A review on carboxylic acid cross-linked polyvinyl alcohol: Properties and applications. Polymer Engineering and Science. 2022;62(2):225-246. https://doi.org/10.1002/pen.25849
- Mandal BB, Kundu SC. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 2009;30(15):2956-2965. https://doi.org/10.1016/j.biomaterials.2009.02.006
- Alexa RL, Iovu H, Ghitman J, Serafim A, Stavarache C, Marin MM, et al. 3D-printed gelatin methacryloyl-based scaffolds with potential application in tissue engineering. Polymers. 2021;13(5):1-17. https://doi.org/10.3390/polym13050727
- Madhumanchi S, Srichana T, Domb AJ. Polymeric Biomaterials. Biomedical Materials: Second Edition. 2020:49-100. https://doi.org/10.1007/978-3-030-49206-9_2
- Wang X, Wang H, Lu J, Feng Z, Liu Z, Song H, et al. Erythropoietin-Modified Mesenchymal Stem Cells Enhance Anti-fibrosis Efficacy in Mouse Liver Fibrosis Model. Tissue Engineering and Regenerative Medicine. 2020;17(5):683-693. https://doi.org/10.1007/s13770-020-00276-2
- Saska S, Pilatti L, De Sousa Silva ES, Nagasawa MA, Câmara D, Lizier N, et al. Polydioxanone-based membranes for bone regeneration. Polymers. 2021;13(11):1685-1685. https://doi.org/10.3390/polym13111685
- Li Y, Liu X, Gaihre B, Li L, Rezaei A, Miller AL, et al. Zinc-doped hydroxyapatite and poly(propylene fumarate) nanocomposite scaffold for bone tissue engineering. Journal of Materials Science. 2022;57(10):5998-6012. https://doi.org/10.1007/s10853-022-06966-7
- Chen J, Spear SK, Huddleston JG, Rogers RD. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry. 2005;7(2):64-82. https://doi.org/10.1039/b413546f
- Moore EM, West JL. Bioactive Poly(ethylene Glycol) Acrylate Hydrogels for Regenerative Engineering. Regenerative Engineering and Translational Medicine. 2019;5(2):167-179. https://doi.org/10.1007/s40883-018-0074-y
- Abdal-hay A, Sheikh FA, Gómez-Cerezo N, Alneairi A, Luqman M, Pant HR, et al. A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. European Polymer Journal. 2022;162. https://doi.org/10.1016/j.eurpolymj.2021.110892
- Barbarisi M, Marino G, Armenia E, Vincenzo Q, Rosso F, Porcelli M, et al. Use of polycaprolactone (PCL) as scaffolds for the regeneration of nerve tissue. Journal of Biomedical Materials Research - Part A. 2015;103(5):1755-1760. https://doi.org/10.1002/jbm.a.35318
- Teoh SH, Goh BT, Lim J. Three-Dimensional Printed Polycaprolactone Scaffolds for Bone Regeneration Success and Future Perspective. Tissue Engineering - Part A. 2019;25(13-14):931-935. https://doi.org/10.1089/ten.tea.2019.0102
- Wang X, He J, Wang Y, Cui FZ. Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus. 2012;2(3):278-291. https://doi.org/10.1098/rsfs.2012.0016
- Wang L, Li J, Zhang D, Ma S, Zhang J, Gao F, et al. Dual-enzymatically crosslinked and injectable hyaluronic acid hydrogels for potential application in tissue engineering. RSC Advances. 2020;10(5):2870-2876. https://doi.org/10.1039/c9ra09531d
- Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H. Alginate Based Scaffolds for Cartilage Tissue Engineering: A Review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020;69(4):230-247. https://doi.org/10.1080/00914037.2018.1562924
- Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: A review. International Journal of Biological Macromolecules. 2015;72:269-281. https://doi.org/10.1016/j.ijbiomac.2014.07.008
- Sahoo DR, Biswal T. Alginate and its application to tissue engineering. SN Applied Sciences. 2021;3(1). https://doi.org/10.1007/s42452-020-04096-w
- Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE. Alginates as biomaterials in tissue engineering. Carbohydrate Chemistry. 2011;37:227-258. https://doi.org/10.1039/9781849732765-00227
- Umuhoza D, Yang F, Long D, Hao Z, Dai J, Zhao A. Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomaterials Science and Engineering. 2020;6(3):1290-1310. https://doi.org/10.1021/acsbiomaterials.9b01781
- Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. Materials Science and Engineering C. 2018;89:456-469. https://doi.org/10.1016/j.msec.2018.04.062
- Lujerdean C, Baci GM, Cucu AA, Dezmirean DS. The Contribution of Silk Fibroin in Biomedical Engineering. Insects. 2022;13(3). https://doi.org/10.3390/insects13030286
- Sánchez-Salcedo S, Arcos D, Vallet-Regí M. Upgrading Calcium Phosphate Scaffolds for Tissue Engineering Applications. Key Engineering Materials. 2008;377:19-42. https://doi.org/10.4028/www.scientific.net/KEM.377.19
- Hajiali F, Tajbakhsh S, Shojaei A. Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polymer Reviews. 2018;58(1):164-207. https://doi.org/10.1080/15583724.2017.1332640
- Thanigai Arul K, Manikandan E, Ladchumananandasivam R. Polymer-based calcium phosphate scaffolds for tissue engineering applications. Nanoarchitectonics in Biomedicine. 2019:585-618. https://doi.org/10.1016/B978-0-12-816200-2.00011-6
- Mhanna R, Hasan A. Introduction to Tissue Engineering. Tissue Engineering for Artificial Organs2017. p. 1-34. https://doi.org/10.1002/9783527689934.ch1
- Bhatia SK. Tissue engineering for clinical applications. Biotechnology Journal. 2010;5(12):1309-1323. https://doi.org/10.1002/biot.201000230
- Abdollahiyan P, Oroojalian F, Mokhtarzadeh A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. Journal of Controlled Release. 2021;332:460-492. https://doi.org/10.1016/j.jconrel.2021.02.036
- Bakhtiar SM, Butt HA, Zeb S, Quddusi DM, Gul S, Dilshad E. 3D Printing Technologies and Their Applications in Biomedical Science. Omics Technologies and Bio-Engineering2018. p. 167-189. https://doi.org/10.1016/B978-0-12-804659-3.00010-5
- Yeltokova M, Akhmedyanova Z, Bayanbayeva Z, Khassenova A, Yermekova K. The use of autologous mesenchymal stem cells in complications of diabetes mellitus, in particular diabetic retinopathy: inputs and insights. Journal of Clinical Medicine of Kazakhstan. 2022;19(2):9-13. https://doi.org/10.23950/jcmk/11938
- Gokul Varshan M, Joel Josephson P, Nayak BB, Hariram V, Balachandar K. History, Challenges, and Opportunities in Tissue Engineering. Handbook of Research on Advanced Functional Materials for Orthopedic Applications. Advances in Chemical and Materials Engineering2023. p. 148-167. https://doi.org/10.4018/978-1-6684-7412-9.ch009
- Zhang B, Huang J, Narayan R. Nanostructured biomaterials for regenerative medicine: Clinical perspectives. Nanostructured Biomaterials for Regenerative Medicine. 2019:47-80. https://doi.org/10.1016/B978-0-08-102594-9.00003-6
- Van De Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular vesicle heterogeneity and its impact for regenerative medicine applications. Pharmacological Reviews. 2023;75(5):1043-1061. https://doi.org/10.1124/pharmrev.123.000841
- Daar AS, Greenwood HL. A proposed definition of regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine. 2007;1(3):179-184. https://doi.org/10.1002/term.20
- Gokul Varshan M, Joel Josephson P, Nayak BB, Hariram V, Balachandar K. History, challenges, and opportunities in tissue engineering. Handbook of Research on Advanced Functional Materials for Orthopedic Applications. 2023:148-167. https://doi.org/10.4018/978-1-6684-7412-9.ch009
- Zhang S, Mikos AG. Biomaterials for Regenerative Medicine. Advanced Healthcare Materials. 2020;9(23). https://doi.org/10.1002/adhm.202001920
- Zhao Y, Wang EY, Lai FBL, Cheung K, Radisic M. Organs-on-a-chip: a union of tissue engineering and microfabrication. Trends in Biotechnology. 2023;41(3):410-424. https://doi.org/10.1016/j.tibtech.2022.12.018
- Zhan Y, Jiang W, Liu Z, Wang Z, Guo K, Sun J. Utilizing bioprinting to engineer spatially organized tissues from the bottom-up. Stem cell research & therapy. 2024;15(1):101-101. https://doi.org/10.1186/s13287-024-03712-5
- Heyde M, Partridge KA, Oreffo ROC, Howdle SM, Shakesheff KM, Garnett MC. Gene therapy used for tissue engineering applications. Journal of Pharmacy and Pharmacology. 2010;59(3):329-350. https://doi.org/10.1211/jpp.59.3.0002
- Cao S, Zhao Y, Hu Y, Zou L, Chen J. New perspectives: In-situ tissue engineering for bone repair scaffold. Composites Part B: Engineering. 2020;202:108445-108445. https://doi.org/10.1016/j.compositesb.2020.108445
- Bulaklak K, Gersbach CA. The once and future gene therapy. Nature Communications. 2020;11(1). https://doi.org/10.1038/s41467-020-19505-2
- Chang AY. Genome engineering with CRISPR/Cas9, ZFNs, and TALENs. CRISPR Genome Surgery in Stem Cells and Disease Tissues. 2022:39-45. https://doi.org/10.1016/b978-0-12-817876-8.00009-7
- Schulze S, Lammers M. The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP. ChemTexts. 2021;7(1). https://doi.org/10.1007/s40828-020-00126-7
- Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, et al. Gene therapy: Comprehensive overview and therapeutic applications. Life Sciences. 2022;294:120375-120375. https://doi.org/10.1016/j.lfs.2022.120375
- Uddin F, Rudin CM, Sen T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front Oncol. 2020;10:1387. https://doi.org/10.3389/fonc.2020.01387
- Mitchell AC, Briquez PS, Hubbell JA, Cochran JR. Engineering growth factors for regenerative medicine applications. Acta Biomaterialia. 2016;30:1-12. https://doi.org/10.1016/j.actbio.2015.11.007
- Bottaro DP, Liebmann-Vinson A, Heidaran MA. Molecular signaling in bioengineered tissue microenvironments. Annals of the New York Academy of Sciences. 2002;961:143-153. https://doi.org/10.1111/j.1749-6632.2002.tb03068.x
- Liu S, Deng Z, Chen K, Jian S, Zhou F, Yang Y, et al. Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep. 2022;25(3). https://doi.org/10.3892/mmr.2022.12615
- Symmons DPM, Silman AJ. The world of biologics. Lupus. 2006;15(3):122-126. https://doi.org/10.1191/0961203306lu2278rr
- Click B, Regueiro M. Managing Risks with Biologics. Curr Gastroenterol Rep. 2019;21(2):1. https://doi.org/10.1007/s11894-019-0669-6
- Manrai M, Jha AA, Dawra S, Pachisia AV. Biologics, small molecules and more in inflammatory bowel disease: the present and the future. Future Pharmacology. 2024;4(1):279-316. https://doi.org/10.3390/futurepharmacol4010017
- Swanson WB, Yao Y, Mishina Y. Novel approaches for periodontal tissue engineering. Genesis (United States). 2022;60(8-9). https://doi.org/10.1002/dvg.23499
- Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. Journal of Bone and Mineral Research. 2020;35(11):2103-2120. https://doi.org/10.1002/jbmr.4171
- Lee CS, Fan J, Hwang HS, Kim S, Chen C, Kang M, et al. Bone-Targeting Exosome Mimetics Engineered by Bioorthogonal Surface Functionalization for Bone Tissue Engineering. Nano Lett. 2023;23(4):1202-1210. https://doi.org/10.1021/acs.nanolett.2c04159
- Saiding Q, Zhang Z, Chen S, Xiao F, Chen Y, Li Y, et al. Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Advanced Drug Delivery Reviews. 2023;203. https://doi.org/10.1016/j.addr.2023.115116
- Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. Journal of Nanobiotechnology. 2023;21(1). https://doi.org/10.1186/s12951-023-02115-7
- Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: The road from laboratory to clinic, part II (BMP delivery). Journal of Tissue Engineering and Regenerative Medicine. 2008;2(2-3):81-96. https://doi.org/10.1002/term.74
- Sales VL, Engelmayr GC, Mettler BA, Johnson JA, Sacks MS, Mayer JE. Transforming Growth Factor-β1 Modulates Extracellular Matrix Production, Proliferation, and Apoptosis of Endothelial Progenitor Cells in Tissue-Engineering Scaffolds. Circulation. 2006;114(SUPPL. 1). https://doi.org/10.1161/CIRCULATIONAHA.105.001628
- Ferrara N. Vascular endothelial growth factor: Basic science and clinical progress. Endocrine Reviews. 2004;25(4):581-611. https://doi.org/10.1210/er.2003-0027
- Ding W, Knox TR, Tschumper RC, Wu W, Schwager SM, Boysen JC, et al. Platelet-derived growth factor (PDGF)-PDGF receptor interaction activates bone marrow-derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: Implications for an angiogenic switch. Blood. 2010;116(16):2984-2993. https://doi.org/10.1182/blood-2010-02-269894
- Chung JCY, Shum-Tim D. Neovascularization in tissue engineering. Cells. 2012;1(4):1246-1260. https://doi.org/10.3390/cells1041246
- Zhang X, Xing H, Qi F, Liu H, Gao L, Wang X. Local delivery of insulin/IGF-1 for bone regeneration: Carriers, strategies, and effects. Nanotheranostics. 2020;4(4):242-255. https://doi.org/10.7150/ntno.46408
- Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver tissue engineering as an emerging alternative for liver disease treatment. Tissue Engineering - Part B: Reviews. 2020;26(2):145-163. https://doi.org/10.1089/ten.teb.2019.0233
- Julier Z, Karami R, Nayer B, Lu YZ, Park AJ, Maruyama K, et al. Enhancing the regenerative effectiveness of growth factors by local inhibition of interleukin-1 receptor signaling. Science Advances. 2020;6(24):7602-7614. https://doi.org/10.1126/sciadv.aba7602
- Hua TT, Bejoy J, Song L, Wang Z, Zeng Z, Zhou Y, et al. Cerebellar Differentiation from Human Stem Cells through Retinoid, Wnt, and Sonic Hedgehog Pathways. Tissue Engineering - Part A. 2021;27(13-14):881-893. https://doi.org/10.1089/ten.tea.2020.0135
- Alahmmar M, Prabhakaran P, Jaganathan S, Malek NANN. Fabrication and Characterization of Polycaprolactone with Retinoic Acid and Cerium Oxide for Anticancer Applications. Biointerface Research in Applied Chemistry. 2023;13(3):201-201. https://doi.org/10.33263/BRIAC133.201
- Wang Y, Wu H, Zhou Z, Maitz MF, Liu K, Zhang B, et al. A thrombin-triggered self-regulating anticoagulant strategy combined with anti-inflammatory capacity for blood-contacting implants. Science Advances. 2022;8(9). https://doi.org/10.1126/sciadv.abm3378
- Li JH, Li Y, Huang D, Yao M. Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair and Regeneration. Tissue Engineering and Regenerative Medicine. 2021;18(5):747-758. https://doi.org/10.1007/s13770-021-00366-9
- Sun L, Billups A, Rietsch A, Damaser MS, Zutshi M. The Effect of Dosing of Stromal Cell-Derived Factor 1 on Anal Sphincter Regeneration. Tissue Engineering - Part A. 2023;29(3-4):93-101. https://doi.org/10.1089/ten.tea.2022.0149
- Saleh LS, Vanderheyden C, Frederickson A, Bryant SJ. Prostaglandin E2 and Its Receptor EP2 Modulate Macrophage Activation and Fusion in Vitro. ACS Biomaterials Science and Engineering. 2020;6(5):2668-2681. https://doi.org/10.1021/acsbiomaterials.9b01180
- Adel M, Kadhim MM, Muttashar HH, Hachim SK, Abdullaha SA, Rheima AM. Two-dimensional silicon carbide monolayer as a promising drug delivery vehicle for hydroxyurea anti-cancer drug. Korean Journal of Chemical Engineering. 2023;40(6):1433-1439. https://doi.org/10.1007/s11814-022-1324-8
- Zheng Y, Hong X, Wang J, Feng L, Fan T, Guo R, et al. 2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges. Advanced Healthcare Materials. 2021;10(7). https://doi.org/10.1002/adhm.202001743
- Kim JH, Choi YJ, Park HI, Ahn KM. The effect of FK506 (tacrolimus) loaded with collagen membrane and fibrin glue on promotion of nerve regeneration in a rat sciatic nerve traction injury model. Maxillofacial Plastic and Reconstructive Surgery. 2022;44(1). https://doi.org/10.1186/s40902-022-00339-5
- Nagao RJ, Marcu R, Shin YJ, Lih D, Xue J, Arang N, et al. Cyclosporine Induces Fenestra-Associated Injury in Human Renal Microvessels in Vitro. ACS Biomaterials Science and Engineering. 2022;8(1):196-207. https://doi.org/10.1021/acsbiomaterials.1c00986
- Cifuentes SJ, Priyadarshani P, Castilla-Casadiego DA, Mortensen LJ, Almodovar J, Domenech M. Heparin/collagen surface coatings modulate the growth, secretome, and morphology of human mesenchymal stromal cell response to interferon-gamma. J Biomed Mater Res A. 2021;109(6):951-965. https://doi.org/10.1002/jbm.a.37085
- Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci U S A. 2015;112(47):14452-14459. https://doi.org/10.1073/pnas.1508520112
- Wang W, Liu Y, Liu Z, Li S, Deng C, Yang X, et al. Evaluation of Interleukin-4-Loaded Sodium Alginate-Chitosan Microspheres for Their Support of Microvascularization in Engineered Tissues. ACS Biomaterials Science and Engineering. 2021;7(10):4946-4958. https://doi.org/10.1021/acsbiomaterials.1c00882
- Kahraman E, Ribeiro R, Lamghari M, Neto E. Cutting-Edge Technologies for Inflamed Joints on Chip: How Close Are We? Front Immunol. 2022;13:802440. https://doi.org/10.3389/fimmu.2022.802440
- Ghovvati M, Bolouri K, Guo L, Kaneko N, Jin X, Xu Y, et al. Harnessing the Power of Electroconductive Polymers for Breakthroughs in Tissue Engineering and Regenerative Medicine. Materials Chemistry Horizons. 2023;2(3):195-206. https://doi.org/10.22128/mch.2023.693.1042
- Akhtar ZB, Gupta AD. Advancements within molecular engineering for regenerative medicine and biomedical applications an investigation analysis towards a computing retrospective. Journal of Electronics, Electromedical Engineering, and Medical Informatics. 2024;6(1):54-72. https://doi.org/10.35882/jeeemi.v6i1.351
- Yamanaka S. Pluripotent Stem Cell-Based Cell Therapy-Promise and Challenges. Cell Stem Cell. 2020;27(4):523-531. https://doi.org/10.1016/j.stem.2020.09.014
- Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Adv Drug Deliv Rev. 2023;199:114904. https://doi.org/10.1016/j.addr.2023.114904
- Macías I, Alcorta-Sevillano N, Infante A, Rodríguez CI. Cutting edge endogenous promoting and exogenous driven strategies for bone regeneration. International Journal of Molecular Sciences. 2021;22(14). https://doi.org/10.3390/ijms22147724
- Abdollahiyan P, Baradaran B, de la Guardia M, Oroojalian F, Mokhtarzadeh A. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. Journal of Controlled Release. 2020;328:514-531. https://doi.org/10.1016/j.jconrel.2020.09.030
- Rifai A, Weerasinghe DK, Tilaye GA, Nisbet D, Hodge JM, Pasco JA, et al. Biofabrication of functional bone tissue: defining tissue-engineered scaffolds from nature. Front Bioeng Biotechnol. 2023;11:1185841. https://doi.org/10.3389/fbioe.2023.1185841
- Cho S, Lee S, Ahn SI. Design and engineering of organ-on-a-chip. Biomed Eng Lett. 2023;13(2):97-109. https://doi.org/10.1007/s13534-022-00258-4
- Beheshtizadeh N, Gharibshahian M, Pazhouhnia Z, Rostami M, Zangi AR, Maleki R, et al. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomedicine and Pharmacotherapy. 2022;153. https://doi.org/10.1016/j.biopha.2022.113431
- Claes E, Heck T, Sonnaert M, Donvil F, Schaschkow A, Desmet T, et al. Product and process design: scalable and sustainable tissue-engineered product manufacturing. Tissue Engineering, Third Edition. 2022:689-716. https://doi.org/10.1016/B978-0-12-824459-3.00020-2
- Jeyaraman M, Jeyaraman N, Nallakumarasamy A, Ramasubramanian S, Yadav S. Critical Challenges and Frontiers in Cartilage Tissue Engineering. Cureus. 2024;16(1):e53095. https://doi.org/10.7759/cureus.53095
- Maartens JH, De-Juan-Pardo E, Wunner FM, Simula A, Voelcker NH, Barry SC, et al. Challenges and opportunities in the manufacture and expansion of cells for therapy. Expert Opin Biol Ther. 2017;17(10):1221-1233. https://doi.org/10.1080/14712598.2017.1360273
- Samandari M, Saeedinejad F, Quint J, Chuah SXY, Farzad R, Tamayol A. Repurposing biomedical muscle tissue engineering for cellular agriculture: challenges and opportunities. Trends in Biotechnology. 2023;41(7):887-906. https://doi.org/10.1016/j.tibtech.2023.02.002
- Kirmanidou Y, Chatzinikolaidou M, Michalakis K, Tsouknidas A. Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: A review of their craniofacial applications. Biomaterials Advances. 2024:213902. https://doi.org/10.1016/j.bioadv.2024.213902
- Rosemann A, Vasen F, Bortz G. Global Diversification in Medicine Regulation: Insights from Regenerative Stem Cell Medicine. Science as Culture. 2019;28(2):223-249. https://doi.org/10.1080/09505431.2018.1556253
- Sawarkar S, Bapat A. Global Regulatory Frameworks and Quality Standards for Stem Cells Therapy and Regenerative Medicines. Stem Cell Production: Processes, Practices and Regulations. 2022:69-111. https://doi.org/10.1007/978-981-16-7589-8_4
- Hermeren G. The ethics of regenerative medicine. Biol Futur. 2021;72(2):113-118. https://doi.org/10.1007/s42977-021-00075-3
- Alageel SK, Hildebrandt M, de Andrade AVG. Correction to: The Regulatory Landscape of Cell- and Tissue-Based Regenerative Medicine: Current Challenges and Emerging Issues. Regenerative Medicine and Plastic Surgery. 2020:C1-C2. https://doi.org/10.1007/978-3-030-19958-6_36
- De Kanter AFJ, Jongsma KR, Verhaar MC, Bredenoord AL. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. Tissue Engineering - Part B: Reviews. 2023;29(2):167-187. https://doi.org/10.1089/ten.teb.2022.0033
- Chan S. Current and emerging global themes in the bioethics of regenerative medicine: The tangled web of stem cell translation. Regenerative Medicine. 2017;12(7):839-851. https://doi.org/10.2217/rme-2017-0065
- Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, Shahsavarani H, et al. Research and therapy with induced pluripotent stem cells (iPSCs): Social, legal, and ethical considerations. Stem Cell Research and Therapy. 2019;10(1). https://doi.org/10.1186/s13287-019-1455-y
- Vertès AA, Qureshi N, Caplan AI, Babiss LE. Stem Cells in Regenerative Medicine: Science, Regulation and Business Strategies2015. 1-768 p. https://doi.org/10.1002/9781118846193