Semi-refined carrageenan induces eryptosis in a Ca2+-dependent manner

Anton Tkachenko 1 2 * , Volodymyr Prokopiuk 1 3, Anatolii Onishchenko 1 2
More Detail
1 Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
2 Department of Biochemistry, Kharkiv National Medical University, Kharkiv, Ukraine
3 Department of Cryobichemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
* Corresponding Author
J CLIN MED KAZ, Volume 19, Issue 1, pp. 42-45. https://doi.org/10.23950/jcmk/11576
OPEN ACCESS 881 Views 691 Downloads
Download Full Text (PDF)

ABSTRACT

Background: Semi-refined carrageenan (food additive E407a) is a widely used thickener, which has been reported to exert toxic and pro-inflammatory effects. In particular, there is accumulating evidence that it induces eryptosis, i.e. a programmed cell death of eryptocytes, via ROS-mediated pathways. However, the role of Ca2+-dependent mechanisms in E407a-induced eryptosis is not elucidated.
Material and methods: Semi-refined carrageenan at concentrations of 0 mg/ml, 1 mg/ml, 5 mg/ml and 10 mg/ml was incubated with blood of intact female WAG rats (n=9) for 24 h in RPMI and fetal bovine serum. After 24 h, the samples were used to obtain erythrocyte suspensions. The obtained suspensions were stained with a Ca2+-sensitive FLUO4 AM probe (30 min, 2.5 µM). The fluorescence of FLUO4 in erythrocytes was detected by a BD FACSCanto II flow cytometer.
Results: The intracellular Ca2+ levels are proportional to the fluorescence of FLUO4. The mean fluorescence intensities (MFI) were compared. Low levels (1 mg/ml) of E407a had no impact on Ca2+ concentrations in erythrocytes (p>0.05). On the contrary, high concentrations (5 mg/ml and 10 mg/ml) of this food additive promoted an increase in the intracellular Ca2+ levels. The MFI values were 2.3- and 2.5-fold higher, respectively (p<0.0001). In addition, the exposure to E407a at concentrations of 5 mg/ml and 10 mg/ml (p<0.0001) increased the percentage of cells with high FLUO4 fluorescence.
Conclusion: Food additive E407a induces eryptosis in a Ca2+-dependent manner.

CITATION

Tkachenko A, Prokopiuk V, Onishchenko A. Semi-refined carrageenan induces eryptosis in a Ca2+-dependent manner. J CLIN MED KAZ. 2022;19(1):42-5. https://doi.org/10.23950/jcmk/11576

REFERENCES

  • Pretorius E, du Plooy JN, Bester J. A Comprehensive Review on Eryptosis. Cell Physiol Biochem. 2016;39(5):1977-2000. https://doi.org/10.1159/000447895
  • Lang F, Lang KS, Lang PA, Huber SM, Wieder T. Mechanisms and significance of eryptosis. Antioxid Redox Signal. 2006;8(7-8):1183-92. https://doi.org/10.1089/ars.2006.8.1183
  • Lang F, Lang E, Föller M. Physiology and pathophysiology of eryptosis. Transfus Med Hemother. 2012;39(5):308-14. https://doi.org/10.1159/000342534
  • Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J. 2019;286(5):826-854. https://doi.org/10.1111/febs.14606
  • Jeney V. Pro-Inflammatory Actions of Red Blood Cell-Derived DAMPs. Exp Suppl. 2018;108:211-233. https://doi.org/10.1007/978-3-319-89390-7_9
  • Alfhili MA, Weidner DA, Lee MH. Disruption of erythrocyte membrane asymmetry by triclosan is preceded by calcium dysregulation and p38 MAPK and RIP1 stimulation. Chemosphere. 2019;229:103-111. https://doi.org/10.1016/j.chemosphere.2019.04.211
  • Al Mamun Bhuyan A, Nüßle S, Cao H, Zhang S, Lang F. Simvastatin, a Novel Stimulator of Eryptosis, the Suicidal Erythrocyte Death. Cell Physiol Biochem. 2017;43(2):492-506. https://doi.org/10.1159/000480476
  • Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev. 2017;31(6):349-361. https://doi.org/10.1016/j.blre.2017.06.001
  • Lang F, Bissinger R, Abed M, Artunc F. Eryptosis - the Neglected Cause of Anemia in End Stage Renal Disease. Kidney Blood Press Res. 2017;42(4):749-760. https://doi.org/10.1159/000484215
  • Totino PRR, de Souza HADS, Correa EHC, Daniel-Ribeiro CT, Ferreira-da-Cruz MF. Eryptosis of non-parasitized erythrocytes is related to anemia in Plasmodium berghei low parasitema malaria of Wistar rats. Parasitol Res. 2019;118(1):377-382. https://doi.org/10.1007/s00436-018-6167-1
  • Boulet C, Doerig CD, Carvalho TG. Manipulating Eryptosis of Human Red Blood Cells: A Novel Antimalarial Strategy? [published correction appears in Front Cell Infect Microbiol. 2019 Jan 14;8:455]. Front Cell Infect Microbiol. 2018;8:419. https://doi.org/10.3389/fcimb.2018.00419
  • Onishchenko A, Myasoedov V, Yefimova S, Nakonechna O, Prokopyuk V, Butov D, et al. UV Light-Activated GdYVO4:Eu3+ Nanoparticles Induce Reactive Oxygen Species Generation in Leukocytes Without Affecting Erythrocytes In Vitro. Biol Trace Elem Res. 2021. https://doi.org/10.1007/s12011-021-02867-z
  • Ran Q, Xiang Y, Liu Y, Xiang L, Li F, Deng X, et al. Eryptosis Indices as a Novel Predictive Parameter for Biocompatibility of Fe3O4 Magnetic Nanoparticles on Erythrocytes. Sci Rep. 2015;5:16209. https://doi.org/10.1038/srep16209
  • Pagano M, Faggio C. The use of erythrocyte fragility to assess xenobiotic cytotoxicity. Cell Biochem Funct. 2015;33(6):351-5. https://doi.org/10.1002/cbf.3135
  • Tkachenko A, Kot Y, Prokopyuk V, Onishchenko A, Bondareva A, Kapustnik V, et al. Food additive E407a stimulates eryptosis in a dose-dependent manner. Wien Med Wochenschr. 2021. https://doi.org/10.1007/s10354-021-00874-2
  • David S, Shani Levi C, Fahoum L, Ungar Y, Meyron-Holtz EG, Shpigelman A, et al. Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food Funct. 2018;9(3):1344-1352. https://doi.org/10.1039/c7fo01721a
  • Bhattacharyya S, Shumard T, Xie H, Dodda A, Varady KA, Feferman L, et al. A randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity. Nutr Healthy Aging. 2017;4(2):181-192. https://doi.org/10.3233/NHA-170023
  • Liu F, Hou P, Zhang H, Tang Q, Xue C, Li RW. Food-grade carrageenans and their implications in health anddisease. Compr Rev Food Sci Food Saf. 2021:1-19. https://doi.org/10.1111/1541-4337.12790
  • Pogozhykh D, Posokhov Y, Myasoedov V, Gubina-Vakulyck G, Chumachenko T, Knigavko O, et al. Experimental Evaluation of Food-Grade Semi-Refined Carrageenan Toxicity. Int J Mol Sci. 2021;22(20):11178. https://doi.org/10.3390/ijms222011178
  • Tkachenko AS, Kot YG, Kapustnik VA, Myasoedov VV, Makieieva NI, Chumachenko TO, et al. Semi-refined carrageenan promotes generation of reactive oxygen species in leukocytes of rats upon oral exposure but not in vitro. Wien Med Wochenschr. 2021;171(3-4):68-78. https://doi.org/10.1007/s10354-020-00786-7
  • Younes M, Aggett P, Aguilar F, Crebelli R, Filipič M, Frutos MJ, et al. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA J. 2018;16(4):e05238. https://doi.org/10.2903/j.efsa.2018.5238
  • Gubina-Vakyulyk GI, Gorbach TV, Tkachenko AS, Tkachenko MO. Damage and regeneration of small intestinal enterocytes under the influence of carrageenan induces chronic enteritis. Comparative Clinical Pathology. 2015;24(6):1473–1477. https://doi.org/10.1007/s00580-015-2102-3
  • Necas J, Bartosikova L. Carrageenan: a review. Veterinarni Medicina. 2013;58:187-205.
  • Tobacman JK. Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect. 2001;109(10):983-94. https://doi.org/10.1289/ehp.01109983
  • Lopes AH, Silva RL, Fonseca MD, Gomes FI, Maganin AG, Ribeiro LS, et al. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun Signal. 2020;18(1):141. https://doi.org/10.1186/s12964-020-00621-x
  • Myers MJ, Deaver CM, Lewandowski AJ. Molecular mechanism of action responsible for carrageenan-induced inflammatory response. Mol Immunol. 2019;109:38-42. https://doi.org/10.1016/j.molimm.2019.02.020
  • Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan-induced NFkappaB activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10. Biochim Biophys Acta. 2008;1780(7-8):973-982. https://doi.org/10.1016/j.bbagen.2008.03.019
  • Bigdelou P, Farnoud AM. Induction of Eryptosis in Red Blood Cells Using a Calcium Ionophore. J Vis Exp. 2020;(155):10.3791/60659. https://doi.org/10.3791/60659
  • Sokolova EV, Menzorova NI, Davydova VN, Kuz'mich AS, Kravchenko AO, Mishchenko NP, et al. Effects of Carrageenans on Biological Properties of Echinochrome. Mar Drugs. 2018;16(11):419. https://doi.org/10.3390/md16110419
  • Barth CR, Funchal GA, Luft C, de Oliveira JR, Porto BN, Donadio MV. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. Eur J Immunol. 2016;46(4):964-70. https://doi.org/10.1002/eji.201545520
  • Tkachenko A, Prokopiuk V, Onishchenko A, Shevchenko M. Effects of E407a on the viability, metabolic and functional activity of dermal fibroblasts. J Clin Med Kaz. 2021;18(5):49-53. https://doi.org/10.23950/jcmk/11229