The impact of exercise on cardiovascular system: Molecular signaling pathway and cardiac adaptations

Bauyrzhan Toktarbay 1 * , Zaukiya Khamitova 1, Nurmakhan Zholshybek 1, Dinara Jumadilova 1 2, Yeltay Rakhmanov 1, Makhabbat Bekbossynova 3, Abduzhappar Gaipov 1, Alessandro Salustri 1 *
More Detail
1 Department of Medicine, School of Medicine, Nazarbayev University, Astana, Kazakhstan
2 Radiology Unit, National Research Cardiac Surgery Center, Astana, Kazakhstan
3 Cardiology Unit No2, National Research Cardiac Surgery Center, Astana, Kazakhstan
* Corresponding Author
J CLIN MED KAZ, Volume 20, Issue 6, pp. 4-11. https://doi.org/10.23950/jcmk/13825
OPEN ACCESS 788 Views 605 Downloads
Download Full Text (PDF)

ABSTRACT

The purpose of this review is to describe the impact of endurance and strength physical training on the cardiovascular system by reviewing the molecular signaling pathways, which plays a key role in different muscle adaptations, and the cardiac changes in terms of metabolic and cardiac remodeling, and hemodynamics. In response to endurance-exercise, multiple signaling pathways, including Ca2+-dependent pathways, reactive oxygen species (ROS), AMP-dependent protein kinase (AMPK), and mitogen activated protein kinases (p38 MAPK), are involved in the regulation of peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α), which controls the mitochondrial biogenesis. Strength training increases the insulin-like growth factor (IGF-1) which initiates the phosphatidylinositol 3-kinase (PI3-k)-(AKT)-(mTOR) signaling cascade, resulting in the synthesis of proteins and the muscle hypertrophy. In addition to the well-documented changes in skeletal muscle, a critical component of the response to exercise training is the dynamic cardiac remodeling, which is classified as either pathological or physiological depending on triggers.

CITATION

Toktarbay B, Khamitova Z, Zholshybek N, Jumadilova D, Rakhmanov Y, Bekbossynova M, et al. The impact of exercise on cardiovascular system: Molecular signaling pathway and cardiac adaptations. J CLIN MED KAZ. 2023;20(6):4-11. https://doi.org/10.23950/jcmk/13825

REFERENCES

  • Xiao W, Soh KG, Wazir MR, Talib O, Bai X, Bu T, Sun H, Popovic S, Masanovic B, Gardasevic J. Effect of functional training on physical fitness among athletes: a systematic review. Frontiers in Physiology. 2021; 1458. https://doi.org/10.3389/fphys.2021.738878
  • Fransson E, De Faire U, Ahlbom A, Reuterwall C, Hallqvist J, Alfredsson L. The risk of acute myocardial infarction: interactions of types of physical activity. Epidemiology. 2004; 1:573-82. https://doi.org/10.1097/01.ede.0000134865.74261.fe
  • Hughes DC, Ellefsen S, Baar K. Adaptations to endurance and strength training. Cold Spring Harbor perspectives in medicine. 2018; 8(6):a029769. https://doi.org/10.1101/cshperspect.a029769
  • Niewiadomski W, Pilis W, Laskowska D, Gąsiorowska A, Cybulski G, Strasz A. Effects of a brief Valsalva manoeuvre on hemodynamic response to strength exercises. Clinical physiology and functional imaging. 2012; 32(2):145-57. https://doi.org/10.1111/j.1475-097x.2011.01069.x
  • Atherton PJ, Babraj JA, Smith K, Singh J, Rennie MJ, Wackerhage H. Selective activation of AMPK‐PGC‐1α or PKB‐TSC2‐mTOR signaling can explain specific adaptive responses to endurance or resistance training‐like electrical muscle stimulation. The FASEB journal. 2005;19(7):1-23. https://doi.org/10.1096/fj.04-2179fje
  • Fernandes T, Soci ÚP, Melo SF, Alves CR, Oliveira EM. Signaling pathways that mediate skeletal muscle hypertrophy: effects of exercise training. InSkeletal Muscle-From Myogenesis to Clinical Relations. 2012. IntechOpen. https://doi.org/10.5772/51087
  • Petriz BA, Gomes CP, Almeida JA, de Oliveira Jr GP, Ribeiro FM, Pereira RW, Franco OL. The effects of acute and chronic exercise on skeletal muscle proteome. Journal of cellular physiology. 2017; 232(2):257-69. https://doi.org/10.1002/jcp.25477
  • Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clinical and experimental pharmacology and physiology. 2002; 29(3):218-22. https://doi.org/10.1046/j.1440-1681.2002.03623.x
  • Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports medicine. 2007; 37:737-63. https://doi.org/10.2165/00007256-200737090-00001
  • Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. Journal of applied physiology. 2011; 110(1):264-74. https://doi.org/10.1152/japplphysiol.00993.2010
  • Andersen JL, Aagaard P. Effects of strength training on muscle fiber types and size; consequences for athletes training for high‐intensity sport. Scandinavian journal of medicine & science in sports. 2010; 20:32-8. https://doi.org/10.1111/j.1600-0838.2010.01196.x
  • Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Applied physiology, nutrition, and metabolism. 2009; 34(3):355-61. https://doi.org/10.1139/H09-023
  • Bonen A. Muscles as molecular and metabolic machines. American Journal of Physiology-Endocrinology and Metabolism. 2010; 299(2):E143-4. https://doi.org/10.1152/ajpendo.00245.2010
  • Drake JC, Wilson RJ, Yan Z. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. The FASEB Journal. 2016; 30(1):13. https://doi.org/10.1096/fj.15-276337
  • Lira VA, Benton CR, Yan Z, Bonen A. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. American Journal of Physiology-Endocrinology and Metabolism. 2010; 299(2):E145-61. https://doi.org/10.1152/ajpendo.00755.2009
  • Niess AM, Simon P. Response and adaptation of skeletal muscle to exercise–the role of reactive oxygen species. Frontiers in Bioscience-Landmark. 2007; 12(13):4826-38. https://doi.org/10.2741/2431
  • Gomez-Cabrera MC, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free radical biology and medicine. 2008; 44(2):126-31. https://doi.org/10.1016/j.freeradbiomed.2007.02.001
  • Silveira LR, Pilegaard H, Kusuhara K, Curi R, Hellsten Y. The contraction induced increase in gene expression of peroxisome proliferator-activated receptor (PPAR)-γ coactivator 1α (PGC-1α), mitochondrial uncoupling protein 3 (UCP3) and hexokinase II (HKII) in primary rat skeletal muscle cells is dependent on reactive oxygen species. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2006; 1763(9):969-76. https://doi.org/10.1016/j.bbamcr.2006.06.010
  • Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. American Journal of Physiology-Cell Physiology. 2009; 296(1):C116-23. https://doi.org/10.1152/ajpcell.00267.2007
  • Kang C, O'Moore KM, Dickman JR, Ji LL. Exercise activation of muscle peroxisome proliferator-activated receptor-γ coactivator-1α signaling is redox sensitive. Free Radical Biology and Medicine. 2009; 47(10):1394-400. https://doi.org/10.1016/j.freeradbiomed.2009.08.007
  • Chin ER. The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proceedings of the Nutrition Society. 2004; 63(2):279-86. https://doi.org/10.1079/pns2004335
  • Raney MA, Turcotte LP. Evidence for the involvement of CaMKII and AMPK in Ca2+-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle. Journal of applied physiology. 2008; 104(5):1366-73. https://doi.org/10.1152/japplphysiol.01282.2007
  • Birk JB, Wojtaszewski JF. Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle. The Journal of physiology. 2006; 577(3):1021-32. https://doi.org/10.1113/jphysiol.2006.120972
  • Thomson DM. The role of AMPK in the regulation of skeletal muscle size, hypertrophy, and regeneration. International journal of molecular sciences. 2018; 19(10):3125. https://doi.org/10.3390/ijms19103125
  • Winder WW, Taylor EB, Thomson DM. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Medicine and science in sports and exercise. 2006; 38(11):1945-9. https://doi.org/10.1249/01.mss.0000233798.62153.50
  • Puigserver P, Rhee J, Lin J, et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Molecular cell. 2001; 8(5):971-82. https://doi.org/10.1016/s1097-2765(01)00390-2
  • Akimoto T, Pohnert SC, Li P, et al.. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. Journal of Biological Chemistry. 2005; 280(20):19587-93. https://doi.org/10.1074/jbc.m408862200
  • Little JP, Safdar A, Cermak N, Tarnopolsky MA, Gibala MJ. Acute endurance exercise increases the nuclear abundance of PGC-1α in trained human skeletal muscle. American journal of physiology-regulatory, integrative and comparative physiology. 2010; 298(4):R912-7. https://doi.org/10.1152/ajpregu.00409.2009
  • Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. The international journal of biochemistry & cell biology. 2005; 37(10):1974-84. https://doi.org/10.1016/j.biocel.2005.04.018
  • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006; 124(3):471-84. https://doi.org/10.1016/j.cell.2006.01.016
  • Camera DM, Edge J, Short MJ, Hawley JA, Coffey VG. Early time course of Akt phosphorylation after endurance and resistance exercise. Medicine and science in sports and exercise. 2010; 42(10):1843-52. https://doi.org/10.1249/mss.0b013e3181d964e4
  • Jossé L, Xie J, Proud CG, Smales CM. mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells. Biochemical Journal. 2016; 473(24):4651-64. https://doi.org/10.1042/bcj20160845
  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995; 378(6559):785-9. https://doi.org/10.1038/378785a0
  • Vyas DR, Spangenburg EE, Abraha TW, Childs TE, Booth FW. GSK-3β negatively regulates skeletal myotube hypertrophy. American Journal of Physiology-Cell Physiology. 2002; 283(2):C545-51. https://doi.org/10.1152/ajpcell.00049.2002
  • Sakamoto K, Arnolds DE, Ekberg I, Thorell A, Goodyear LJ. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. Biochemical and biophysical research communications. 2004; 319(2):419-25. https://doi.org/10.1016/j.bbrc.2004.05.020
  • Manning BD, Cantley LC. United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochemical Society Transactions. 2003; 31(3):573-8. https://doi.org/10.1042/bst0310573
  • Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochemical Society Transactions. 2009; 37(1):217-22. https://doi.org/10.1042/bst0370217
  • Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes & development. 2003; 17(15):1829-34. https://doi.org/10.1101/gad.1110003
  • Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology. 2006; 21(1):48-60. https://doi.org/10.1152/physiol.00044.2005
  • Castro AF, Rebhun JF, Clark GJ, Quilliam LA. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner. Journal of Biological Chemistry. 2003; 278(35):32493-6. https://doi.org/10.1074/jbc.c300226200
  • Gibb AA, Epstein PN, Uchida S, et al. Exercise-induced changes in glucose metabolism promote physiological cardiac growth. Circulation. 2017; 136(22):2144-57. https://doi.org/10.1161/circulationaha.117.028274
  • Gibb AA, Hill BG. Metabolic coordination of physiological and pathological cardiac remodeling. Circulation research. 2018; 123(1):107-28. https://doi.org/10.1161/circresaha.118.312017
  • Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal-Cardiovascular Imaging. 2015; 16(3):233-71. https://doi.org/10.1093/ehjci/jev014
  • Ganau A, Devereux RB, Roman MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. Journal of the American College of Cardiology. 1992; 19(7):1550-8. https://doi.org/10.1016/0735-1097(92)90617-v
  • Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in cardiac hypertrophy and failure. Circulation research. 2015; 116(8):1462-76. https://doi.org/10.1161/circresaha.116.304937
  • Maillet M, Van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nature reviews Molecular cell biology. 2013; 14(1):38-48. https://doi.org/10.1038/nrm3495
  • Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. Journal of molecular and cellular cardiology. 2016; 97:245-62. https://doi.org/10.1016/j.yjmcc.2016.06.001
  • Weeks KL, McMullen JR. The athlete's heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology. 2011; 26(2):97-105. https://doi.org/10.1152/physiol.00043.2010
  • Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular mechanisms underlying cardiac adaptation to exercise. Cell metabolism. 2017; 25(5):1012-26. https://doi.org/10.1016/j.cmet.2017.04.025
  • Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Annals of internal medicine. 1975; 82(4):521-4. https://doi.org/10.7326/0003-4819-82-4-521
  • Fagard R. Athlete’s heart. Heart. 2003; 89(12):1455-61. http://dx.doi.org/10.1136/heart.89.12.1455
  • Petek BJ, Groezinger EY, Pedlar CR, Baggish AL. Cardiac effects of detraining in athletes: A narrative review. Annals of Physical and Rehabilitation Medicine. 2022; 65(4):101581. https://doi.org/10.1016/j.rehab.2021.101581
  • Pelliccia A, Maron BJ, De Luca R, Di Paolo FM, Spataro A, Culasso F. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation. 2002; 105(8):944-9. https://doi.org/10.1161/hc0802.104534
  • Maron BJ. Distinguishing hypertrophic cardiomyopathy from athlete’s heart: a clinical problem of increasing magnitude and significance. Heart. 2005; 91(11):1380. https://doi.org/10.1136/hrt.2005.060962
  • Strøm CC, Aplin M, Ploug T, et al. Expression profiling reveals differences in metabolic gene expression between exercise‐induced cardiac effects and maladaptive cardiac hypertrophy. The FEBS journal. 2005; 272(11):2684-95. https://doi.org/10.1111/j.1742-4658.2005.04684.x
  • Aubert G, Vega RB, Kelly DP. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research. 2013; 1833(4):840-7. https://doi.org/10.1016/j.bbamcr.2012.08.015
  • Shiojima I, Sato K, Izumiya Y, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. The Journal of clinical investigation. 2005; 115(8):2108-18. https://doi.org/10.1172/jci24682
  • Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature reviews Molecular cell biology. 2006; 7(8):589-600. https://doi.org/10.1038/nrm1983
  • Ekblom B, Hermansen L. Cardiac output in athletes. Journal of Applied Physiology. 1968; 25(5):619-25. https://doi.org/10.1152/jappl.1968.25.5.619
  • Vinereanu D, Florescu N, Sculthorpe N, Tweddel AC, Stephens MR, Fraser AG. Left ventricular long-axis diastolic function is augmented in the hearts of endurance-trained compared with strength-trained athletes. Clinical science. 2002; 103(3):249-57. https://doi.org/10.1042/cs1030249
  • Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. The athlete’s heart: a meta-analysis of cardiac structure and function. Circulation. 2000; 101(3):336-44. https://doi.org/10.1161/01.cir.101.3.336
  • Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure–regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005; 46(4):667-75. https://doi.org/10.1161/01.hyp.0000184225.05629.51
  • Meka N, Katragadda S, Cherian B, Arora RR. Endurance exercise and resistance training in cardiovascular disease. Therapeutic advances in cardiovascular disease. 2008; 2(2):115-21. https://doi.org/10.1177/1753944708089701
  • Fisman EZ, Embonm P, Pines A, et al. Comparison of left ventricular function using isometric exercise Doppler echocardiography in competitive runners and weightlifters versus sedentary individuals. The American journal of cardiology. 1997; 79(3):355-9. https://doi.org/10.1016/s0002-9149(96)00761-8
  • MacDougall JD, Tuxen DS, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. Journal of applied Physiology. 1985; 58(3):785-90. https://doi.org/10.1152/jappl.1985.58.3.785
  • Kasikcioglu E, Oflaz H, Akhan H, et al. Left ventricular remodeling and aortic distensibility in elite power athletes. Heart and vessels. 2004; 19:183-8. https://doi.org/10.1007/s00380-004-0765-9
  • Mihl C, Dassen WR, Kuipers H. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Netherlands Heart Journal. 2008; 16:129-33. https://doi.org/10.1007/bf03086131
  • Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Comprehensive physiology. 2012; 2(2):1143. https://doi.org/10.1002/cphy.c110025
  • Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. New England journal of medicine. 2002; 346(11):793-801. https://doi.org/10.1056/nejmoa011858
  • Wisløff U, Støylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086-94. https://doi.org/10.1161/circulationaha.106.675041
  • Chen YM, Li ZB, Zhu M, Cao YM. Effects of exercise training on left ventricular remodelling in heart failure patients: an updated meta‐analysis of randomised controlled trials. International journal of clinical practice. 2012; 66(8):782-91. https://doi.org/10.1111/j.1742-1241.2012.02942.x