The role of aquaporins in the regulation of body fluids homeostasis

Olayinka Rasheed Ibrahim 1 * , Ayodele Olufemi Soladoye 2
More Detail
1 Department of Pediatrics, Federal Medical Centre, Katsina, Katsina State, Nigeria
2 Department of Human Physiology, Bowen University, Iwo, Osun State, Nigeria
* Corresponding Author
J CLIN MED KAZ, Volume 4, Issue 54, pp. 15-20.
Download Full Text (PDF)


The rapid transfer of the water across the cells occurs via specialized channels called aquaporins (AQPs). The structure of AQPs comprises of homotetramers with each of the four units functioning as an independent channel. The distribution of total body water is into intracellular (40% of total body weight) and extracellular compartments (20% of total body weight). While there is some degree of physical separation of the compartments, water freely moved between them with the intent of achieving homeostasis. The typical role of AQP is to act as an effector in the regulation of water at cellular, tissue and organ levels, although recent evidence suggested it can also act as a sensor-effector system. The regulatory roles include cell volume regulation (CVR), which comprises of regulatory volume decrease and regulatory volume increase. The AQPs are also involved in the total body water homeostasis via short- and long-term regulatory mechanisms. The short-term water regulation takes place within minutes, and it typified by insertion of AQP2 into the apical cell membrane of collecting duct following activation of V2 receptor by vasopressin. The long-term regulation by the AQPs involves increased expression of AQPs. Hence, this narrative reviewed the importance of AQPs in the ability to facilitate highly efficient, yet strictly selective permeation of small molecules including water, solutes, and ions, transport across the plasma membrane as it relates to body fluid homeostasis.


Ibrahim OR, Soladoye AO. The role of aquaporins in the regulation of body fluids homeostasis. Journal of Clinical Medicine of Kazakhstan. 2019;4(54):15-20.


  • Verbalis J. Disorders of body water homeostasis. Best Pract Res Clin Endocrinol Metab. 2003; 17(4):471-503.
  • Pohl P. Combined transport of water and ions through membrane channels. Biol Chem. 2004; 385(10):921-926.
  • Fanning AS, Mitic LL, Anderson JM. Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol. 1999; 10(6):1337-1345.
  • Goodman BE. Transport of small molecules across cell membranes: water channels and urea transporters. Adv Physiol Educ. 2002; 26(3):146-157.
  • Benga G. Water channel proteins (later called aquaporins) and relatives: Past, present, and future. IUBMB Life. 2009; 61(2):112-133.
  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, et al. Aquaporin water channels – from atomic structure to clinical medicine. J Physiol. 2002; 542:3-16.
  • Benga G. On the definition, nomenclature and classification of water channel proteins (aquaporins and relatives). Mol Aspects Med. 2012; 33(5-6):514-517.
  • Tanghe A, Van Dijck P, Thevelein JM. Why do microorganisms have aquaporins? Trends Microbiol. 2006; 14(2):78-85.
  • Benga G. Aquaporinology. Acta Endocrinol. 2014; 1(1):1-8.
  • Nordén K. From Sequence to Structure: Characterizing Human and Plant Aquaporins. Department of Chemistry, Lund University; 2012.
  • King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol. 2004; 5(9):687-698.
  • Walz T, Hirai T, Murata K, Heymann JB, Mitsuoka K, Fujiyoshi Y, et al. The three-dimensional structure of aquaporin-1. Nature. 1997; 387(6633):624-627.
  • Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channesls. Annu Rev Biochem. 1999; 68:425-458.
  • Gonen T, Walz T. The structure of aquaporins. Quartely Rev Biophys. 2006; 39(4):361-396.
  • Ho JD, Yeh R, Sandstrom A, Chorny I, Harries WEC, Robbins RA, et al. Crystal structure of human aquaporin 4 at 1 . 8 Å and its mechanism of conductance. PNAS. 2009; 106(18):7437-7442.
  • Agarwal SK, Gupta A. Aquaporins : The renal water channels. Indian J Nephrol. 2010; 18(3):95-100.
  • Brown D, Katsura T, Gustafson CE. Cellular mechanisms of aquaporin trafficking. Am J Physiol. 1998; 275(3 Pt 2):F328-31.
  • Gravelle S, Joly L, Detcheverry F, Ybert C, Cottin-Bizonne C, Bocquet L. Optimizing water permeability through the hourglass shape of aquaporins. Proc Natl Acad Sci U S A. 2013; 110(41):16367-1672.
  • De Groot BL, Hub JS, Grubmüller H. Dynamics and energetics of permeation through aquaporins. What Do we learn from molecular dynamics simulations? Handb Exp Pharmacol. 2009; 190:57-76.
  • Linda S C. BRS Physiology. 5th ed. Philadelphia,: Lippincott Williams & Wilkins; 2011.
  • Bianchetti MG, Simonetti GD, Bettinelli A. Body fluids and salt metabolism - Part I. Ital J Pediatr. 2009; 35(1):36.
  • Sembulingam K, Sembuligan P. Essential of Medical Physiology. 6th ed. India: Jaypee Brothers Medical Publishers (P) Ltd; 2012.
  • Knepper MA, Kwon T, Nielsen S, Knepper, Mark A; Kwon, Tae-Hwan; Nielsen S. Molecular Physiology of Water Balance. N Engl J Med. 2015; 372(14):1349-1358.
  • Modell H, Cliff W, Michael J, McFarland J, Wenderoth MP, Wright A. A physiologist’s view of homeostasis. Adv Physiol Educ. 2015; 39(4):259-266.
  • Lebeck J. Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol. 2014; 52(2).
  • Day RE, Kitchen P, Owen DS, Bland C, Marshall L, Conner AC, et al. Biochimica et Biophysica Acta Human aquaporins : Regulators of transcellular water flow. Biochim Biophys Acta. 2014; 1840(5):1492-1506.
  • Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, Sasaki S, et al. Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J. 2008; 22(10):3672-3684.
  • Madeira A, Fernández-Veledo S, Camps M, Zorzano A, Moura TF, Ceperuelo-Mallafré V, et al. Human Aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity. 2014; 22(9):2010-2017.
  • Kitchen P, Öberg F, Sjöhamn J, Hedfalk K, Bill RM, Conner C, et al. Plasma membrane abundance of human aquaporin 5 is dynamically regulated by multiple pathways. PLoS One. 2015; 10(11):1-17.
  • Ishibashi K, Kondo S, Hara S, Morishita Y. The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol. 2011; 300(3):R566-R576.
  • Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015; 10(5):852-862.
  • Shen MR, Chou CY, Browning JA, Wilkins RJ, Ellory JC. Human cervical cancer cells use Ca2+ signalling, protein tyrosine phosphorylation and MAP kinase in regulatory volume decrease. J Physiol. 2001; 537(Pt 2):347-362.
  • Piao L, Li HY, Park C. Mechanosensitivity of voltage‐gated K+ currents in rat trigeminal ganglion neurons. J Neurosci Res. 2006; 1380:1373-1380.
  • Heo J, Meng F, Hua SZ. Contribution of aquaporins to cellular water transport observed by a microfluidic cell volume sensor. Anal Chem. 2008; 80(18):6974-6980.
  • Liu X, Bandyopadhyay B, Nakamoto T, Singh B, Liedtke W, Melvin JE, et al. A role for AQP5 in activation of TRPV4 by hypotonicity: Concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem. 2006; 281(22):15485-15495.
  • Jentsch TJ. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat Rev Mol Cell Biol. 2016; 17(5):293-307.
  • Nielsen S. Renal aquaporins : an overview. BJU Int. 2002; 90:2-7.
  • Park E, Kwon T, Ph D. A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press. 2015; 13:1-6.
  • Kasono K, Saito T, Saito T, Tamemoto H, Yanagidate C, Uchida S, et al. Hypertonicity regulates the aquaporin-2 promoter independently of arginine vasopressin. Nephrol Dial Transplant. 2005; 20(3):509-515.
  • Matsuzaki T, Yaquchi T, Schimizu K, Kita A, Ishibashi K, Takata K, et al. The distribution and function of aquaporins in the kidney: resolved and unresolved questions. Anat Sci Int. 2016; 1-13.
  • Verkman AS. Lessons on Renal Physiology from Transgenic Mice Lacking Aquaporin Water Channels. 1999; (12):1126-1135.
  • Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013; 14(4):265-277.
  • Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002; 22(4):367-378.
  • Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta - Biomembr. 2006; 1758(8):1085-1093.
  • Zador Z, Stiver S, Wang V, Manley GT. Aquaporins. Handb Exp Pharmacol. 2009; 190(190):159-170.
  • Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007; 22(6):778-784.
  • Beitz E, Zenner HP, Schultz JE. Aquaporin-mediated fluid regulation in the inner ear. Cell Mol Neurobiol. 2003; 23(3):315-329.
  • Verkman AS. More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci. 2005; 118:3225-3232.
  • Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 2005; 19(1):76-78.
  • Vilas G, Krishnan D, Kumar S, Malhotra D, Margolis B. Increased water flux induced by an aquaporin-1 / carbonic anhydrase II interaction. Mol Biol Cell. 2015; 26:1106-1118.
  • Egan JR, Butler TL, Au CG, Tan YM, North KN, Winlaw DS. Myocardial water handling and the role of aquaporins. Biochim Biophys Acta - Biomembr. 2006; 1758(8):1043-10
  • 52. Frias T, Duarte R. Aquaporins in physiology and pathology. TRENDS Sport Sci. 2014; 3(21):135-144.
  • Fronius M, Clauss WG, Althaus M. Why do we have to move fluid to be able to breathe? Front Physiol. 2012; 3(146):1-9.
  • Verkman a. S. Aquaporins in Clinical Medicine. Annu Rev Med. 2012; 63(1):303-316.
  • McConnell NA, Yunus RS, Gross SA, Bost KL, Clemens MG, Hughes FM. Water permeability of an ovarian antral follicle is predominantly transcellular and mediated by aquaporins. Endocrinology. 2002; 143(8):2905-2912.
  • Huang HF, He RH, Sun CC, Zhang Y, Meng QX, Ma YY. Function of aquaporins in female and male reproductive systems. Hum Reprod Updat. 2006 ;12(6):785-795. [pii]\r10.1093/humupd/dml035
  • Yeung C-H. Aquaporins in spermatozoa and testicular germ cells: identification and potential role. Asian J Androl. 2010; 12(4):490-499.
  • Laforenza U. Water channel proteins in the gastrointestinal tract. Mol Aspects Med. 2012; 33(5-6):642-650.
  • Verkman AS. Aquaporins : translating bench research to human disease. J Exp Biol. 2009; 212:1707-1715.
  • Mobasheri A, Marples D. Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol. 2004; 286(3):C529-C537.
  • Mobasheri A, Marples D, Young IS, Floyd R V., Moskaluk CA, Frigeri A. Distribution of the AQP4 water channel in normal human tissues: Protein and tissue microarrays reveal expression in several new anatomical locations, including the prostate gland and seminal vesicles. Channels. 2007; 1(1):29-38.
  • Boury-Jamot M, Sougrat R, Tailhardat M, Varlet B Le, Bont?? F, Dumas M, et al. Expression and function of aquaporins in human skin: Is aquaporin-3 just a glycerol transporter? Biochim Biophys Acta - Biomembr. 2006; 1758(8):1034-1042.
  • Verkman AS. Mammalian aquaporins: diverse physiological roles and potential clinical significance. Expert Rev Mol Med. 2008; 10:e13.
  • Gresz V, Kwon TH, Hurley PT, Varga G, Zelles T, Nielsen S, et al. Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol. 2001; 281(1):G247-G254.