The roles of fasting blood glucose to HDL-cholesterol ratio and monocyte to HDL-cholesterol ratio on coronary slow flow in non-diabetic patients

Sara Cetin Sanlialp 1 * , Musa Sanlialp 2, Gokay Nar 3, Cennet Yildiz 4
More Detail
1 Department of Cardiology, Servergazi State Hospital, Denizli, Turkey
2 Department of Cardiology, Denizli State Hospital, Denizli, Turkey
3 Department of Cardiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
4 Department of Cardiology, Bakirkoy Doctor Sadi Konuk Training and Research Hospital, Istanbul, Turkey
* Corresponding Author
J CLIN MED KAZ, Volume 18, Issue 5, pp. 70-75. https://doi.org/10.23950/jcmk/11238
OPEN ACCESS 1014 Views 698 Downloads
Download Full Text (PDF)

ABSTRACT

Aim: This study aimed to evaluate the relationship between coronary slow flow (CSF) with fasting blood glucose/high-density lipoprotein cholesterol ratio (GHR) and monocyte/high-density lipoprotein cholesterol ratio (MHR) in patients without overt diabetes and to reveal the effects of hyperglycemia and inflammation on CSF development.
Material and Methods: In this retrospective study,   a total of 237 patients who underwent coronary angiography were enrolled and divided into two groups according to CSF presence. 109 of them had CSF and 128 of them had normal coronary flow (CNF). The thrombolysis in myocardial infarction (TIMI) frame count (TFC) was calculated for each coronary artery and the values above the normal range was defined as CSF.
Results: GHR and MHR were significantly higher in CSF patients compared to those without (p<0.001, p<0.001). In correlation analysis, total TFC showed a statistically significant relation with these markers (for both r=0.745, p<0.001). In multivariate logistic regression analysis, GHR and MHR were independent predictors for CSF presence (p<0.001, p<0.001). The receiver operating characteristic (ROC) curve analysis showed the  best  cut off values of GHR and MHR as 2.105 and as 12.93, respectively (AUC=0.861, p<0.001; AUC=0.849, p<0.001).
Conclusion: In this study, there was a strong relationship between CSF with GHR and MHR. In addition, elevated values of GHR and MHR supported the roles of hyperglycemia and inflammation in CSF etiopathogenesis.

CITATION

Cetin Sanlialp S, Sanlialp M, Nar G, Yildiz C. The roles of fasting blood glucose to HDL-cholesterol ratio and monocyte to HDL-cholesterol ratio on coronary slow flow in non-diabetic patients. J CLIN MED KAZ. 2021;18(5):70-5. https://doi.org/10.23950/jcmk/11238

REFERENCES

  • Wang X, Nie S. The coronary slow flow phenomenon: characteristics, mechanisms and implications. Cardiovasc Diagn Ther. 2011;1:37-43. doi: 10.3978/j.issn.2223-3652.2011.10.01.
  • Ghaffari S, Tajlil A, Aslanabadi N, Separham A, Sohrabi B, Saeidi G, et al. Clinical and laboratory predictors of coronary slow flow in coronary angiography. Perfusion. 2017;32(1):13-19. doi: 10.1177/0267659116659918.
  • Avogaro A, Giorda C, Maggini M, Mannucci E, Raschetti R, Lombardo F, et al. Incidence of coronary heart disease in type 2 diabetic men and women. Impact of microvascular complications, treatment, and geographic location. Diabetes Care. 2007;30 (5):1241-1247. doi: 10.2337/dc06-2558.
  • Van de Ree MA, Huisman MV, de Man FH, van der Vijver JC, Meinders AE, Blauw GJ. Impaired endothelium-dependent vasodilation in type 2 diabetes mellitus and the lack of effect ofsimvastatin. Cardiovasc Res. 2001;52:299-305. doi:10.2337/diacare.28.7.1668.
  • Gabir MM, Hanson RL, Dabelea D, Imperatore G, Roumain J, Bennett PH, et al. Plasma glucose and prediction of microvascular disease and mortality: evaluation of 1997 American Diabetes Association and 1999 World Health Organization criteria for diagnosis of diabetes. Diabetes Care. 2000;23(8):1113-1118. doi: 10.2337/diacare.23.8.1113.
  • Konstantinou DM, Chatzizisis YS, Louridas GE, Parcharidis GE, Giannoglou GD. Non-diabetic hyperglycaemia correlates with angiographic coronary artery disease prevalence and severity. Diabetes Metab. 2010;36:402-408. doi: 10.1016/j.diabet.2010.04.005.
  • Gui MH, Li X, Lu ZQ, Gao X. Fasting plasma glucose correlates with angiographic coronary artery disease prevalence and severity in Chinese patients without known diabetes. Acta Diabetol. 2013;50:333-340. doi: 10.1007/s00592-012-0405-2.
  • Yokoyama I, Momomura S, Ohtake T, Yonekura K, Nishikawa J, Sasaki Y, et al. Reduced myocardial flow reserve in non insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1997;30:1472-1477. doi: 10.1016/s0735-1097(97)00327-6.
  • Akasaka T, Yoshida K, Hozumi T, Takagi T, Kaji S, Kawamoto T, et al. Retinopathy identifiesmarked restriction of coronary flow reserve in patients with diabetes mellitus. J Am Coll Cardiol. 1997;30:935-941. doi: 10.1016/s0735-1097(97)00242-8.
  • Silbernagel G, Schöttker B, Appelbaum S, Scharnagl H, Kleber ME, Grammer TB, et al. High-density lipoprotein cholesterol, coronary artery disease, and cardiovascular mortality. Eur Heart J. 2013;34(46):3563-3571. doi: 10.1093/eurheartj/eht343.
  • Sanati H, Kiani R, Shakerian F, Firouzi A, Zahedmehr A, Peighambari M, et al. Coronary slow flow phenomenon clinical findings and predictors. Res Cardiovasc Med. 2016;5(1): e30296. doi: 10.5812/cardiovascmed.30296.
  • Sezgin AT, Barutcu I, Sezgin N, Gullu H, Esen AM, Acikgoz N, et al. Contribution of plasma lipid disturbances to vascular endothelial function in patients with slow coronary flow. Angiology. 2006;57(6):694-701. doi: 10.1177/0003319706295472.
  • Guo QQ, Zheng YY, Tang JN, Wu TT, Yang XM, Zhang ZL, et al. Fasting blood glucose to HDL-C ratio as a novel predictor of clinical outcomes in non-diabetic patients after PCI. Biosci Rep. 2020;40(12):BSR20202797. doi: 10.1042/BSR20202797.
  • Kanbay M, Solak Y, Unal HU, Kurt YG, Gok M, Cetinkaya H, et al. Monocyte count/HDL cholesterol ratio and cardiovascular events inpatients with chronic kidney disease. Int Urol Nephrol. 2014;46:1619-1625. doi: 10.1007/s11255-014-0730-1.
  • Cetin EHO, Cetin MS, Canpolat U, Aydin S, Topaloglu S, Aras D, et al. Monocyte/HDL-cholesterol ratio predicts the definite stent thrombosis after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Biomark Med. 2015;9:967-977. doi: 10.2217/bmm.15.74.
  • Karataş MB, Çanga Y, Özcan KS, İpek G, Güngör B, Onuk T, et al. Monocyte to high-density lipoprotein ratio as a new prognostic marker in patients with STEMI undergoing primary percutaneous coronary intervention. Am J Emerg Med. 2016;34(2):240-244. doi: 10.1016/j.ajem.2015.10.049.
  • Canpolat U, Çetin EH, Cetin S, Aydin S, Akboga MK, Yayla C, et al. Association of Monocyte-to-HDL Cholesterol Ratio with Slow Coronary Flow is Linked to Systemic Inflammation. Clin Appl Thromb Hemost. 2016;22(5):476-482. doi: 10.1177/1076029615594002.
  • Gibson CM, Cannon CP, Daley WL, Dodge JT, Alexander B, Marble SJ, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996;93:879-888. doi: 10.1161/01.cir.93.5.879.
  • Burchartt BA, Mukerji V, Alpert MA. Coronary artery slow flowassociated with angina pectoris and hypotension: a case report. Angiology.1998;49:483-487. doi: 10.1177/000331979804900610.
  • Nielson C, Lange T, Hadjokas N. Blood glucose and coronary artery disease in nondiabetic patients. Diabetes Care. 2006;29(5):998-1001. doi: 10.2337/diacare.295998.
  • King RJ, Grant PJ. Diabetes and cardiovascular disease: pathophysiology of a life-threatening epidemic. Herz 2016;41:184-192. doi: 10.1007/s00059-016-4414-8.
  • Schinner S, Füth R, Kempf K, Martin S, Willenberg HS, Schott M, et al. A progressive increase in cardiovascular risk assessed by coronary angiography in non-diabetic patients at sub-diabetic glucose levels. Cardiovasc Diabetol. 2011;10:56. doi: 10.1186/1475-2840-10-56.
  • Dong X, Zhou L, Zhai Y, Lu B, Wang D, Shi H, et al. Impaired fasting glucose and the prevalence and severity of angiographic coronary artery disease in high-risk Chinese patients. Metabolism. 2008;57(1):24-29. doi: 10.1016/j.metabol.2007.08.004.
  • Harrison DG. Endothelial dysfunction in the coronary microcirculation: A new clinical entity or an experimental finding? J Clin Invest. 1993;91:1-2. doi: 10.1172/JCI116156.
  • Epstein SE, Cannon RO 3rd, Talbot TL. Hemodynamic principles in the control of coronary blood flow. Am J Cardiol. 1985;56(9):4-10. doi: 10.1016/0002-9149(85)91169-5.
  • Binak E, Gunduz H, Sahin M, Kurtoglu N, Dindar I. The relation between impaired glucose tolerance and slow coronary flow. Int J Cardiol. 2006;111:142-146. doi: 10.1016/j.ijcard.2005.09.007.
  • Elsherbiny IA, Shoukry A, El Tahlawi MA. Mean platelet volume and its relation to insulin resistance in non-diabetic patients with slow coronary flow. J Cardiol. 2012;59:176-181. doi: 10.1016/j.jjcc.2011.11.009.
  • Ozcan T, Gen R, Akbay E, Horoz M, Akcay B, Genctoy G, et al. The correlation of thrombolysis in myocardial infarction frame count with insulin resistance in patients with slow coronary flow. Coron Artery Dis. 2008;19:591-595. doi: 10.1097/MCA.0b013e32831381c8.
  • Arslan U, Balcı MM, Kocaoğlu I. Coronary blood flow is slower in prediabetic and diabetic patients with normal coronary arteries compared with nondiabetic patients. Exp Clin Cardiol. 2012;17:187-190.
  • Kuvin JT, Rämet ME, Patel AR, Pandian NG, Mendelsohn ME, Karas RH. A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression. Am Heart J. 2002;144(1):165-172. doi: 10.1067/mhj.2002.123145.
  • Kalayci B, Kalayci S, Köktürk F. Proportional Serum Lipid Parameters in Coronary Slow Flow. Turkiye Klinikleri J Cardiovasc Sci. 2019;31(1):21-28. doi: 10.5336/cardiosci.2018-63794.
  • Cersosimo E, Defronzo RA. Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev. 2006;22:423-436. doi: 10.1002/dmrr.634.
  • Yilmaz H, Demir I, Uyar Z. Clinical and coronary angiographic characteristics of patients with coronary slow flow. Acta Cardiol. 2008;63:579-584. doi: 10.2143/AC.63.5.2033224.
  • Yilmaz B, Erdem A, Yontar OC, Sarikaya S, Yilmaz A, Madak M, et al. Relationship between HbA1c and coronary flow rate in patients with type 2 diabetes mellitus and angiographically normal coronary arteries. Arch Turk Soc Cardiol. 2010;38(6):405-410.
  • khan A, Rashid A, Wani I, Iqbal MD, Hafeez I, Tramboo N, et al. Correlation of HbA1c with coronary flow velocity and disease severity in chronic stable angina. Heart India. 2020;8:127-132. doi: 10.4103/heartindia.heartindia_26_20.
  • Yokoyama I, Momomura S, Ohtake T, Yonekura K, Nishikawa J, Sasaki Y, et al. Reduced myocardial flow reserve in non insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1997;30:1472-1477. doi: 10.1016/s0735-1097(97)00327-6.
  • Moroni F, Ammirati E, Norata GD, Magnoni M, Camici PG. The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis. Mediators Inflamm. 2019;7434376. doi: 10.1155/2019/7434376.
  • Murphy AJ, Chin-Dusting JP, Sviridov D, Woollard KJ. The antiinflammatory effects of high density lipoproteins. Curr Med Chem. 2009;16(6):667-675. doi: 10.2174/092986709787458425.
  • Li JJ, Qin XW, Li ZC, Zeng HS, Gao Z, Xu B, et al. Increased plasma C-reactive protein and interleukin-6 concentrations in patients with slow coronary flow. Clin Chim Acta. 2007;385:43-47. doi: 10.1016/j.cca.2007.05.024.