The study of phospholipid bilayer of cell membranes in leukocytes incubated with high concentrations of the food additive E407a

Anton Tkachenko 1 2 * , Anatolii Onishchenko 1 2, Alexander Roshal 3, Yevgen Posokhov 1 4
More Detail
1 Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University; Kharkiv, Ukraine
2 Department of Biochemistry, Kharkiv National Medical University; Kharkiv, Ukraine
3 Institute of Chemistry, V.N. Karazin Kharkiv National University; Kharkiv, Ukraine
4 Department of Organic Chemistry, Biochemistry and Microbiology, The National Technical University “Kharkiv Polytechnic Institute”; Kharkiv, Ukraine
* Corresponding Author
J CLIN MED KAZ, Volume 18, Issue 2, pp. 49-52.
Download Full Text (PDF)


The aim of the study was to assess the impact of semi-refined carrageenan (E407a) on the hydrophobic region of phospholipid bilayer in cell membranes of leukocytes exposed to the solution with high concentrations of this food additive.
Materials and methods. Fluorescent probe (2-phenyl-phenanthro[9,10-d]-1,3-oxazole) was used to investigate the influence of E407a on the state of lipid bilayer in leukocytes extracted from rats and treated with a 5% solution of the food additive E407a during 4 hours.  
Results. The shapes of the probe fluorescence spectra did not differ in leukocytes of rats treated with the 5% solution of semi-refined carrageenan and white blood cells of control samples. Such findings suggest that exposure to the E407a solution causes no changes in the proton-donor ability of the media in the lipid membranes of leukocytes in the region where the probe locates.
Conclusion. Exposure of white blood cell suspensions to the semi-refined carrageenan solution does not affect the membrane hydration of the hydrophobic region of leukocyte phospholipid bilayer.


Tkachenko A, Onishchenko A, Roshal A, Posokhov Y. The study of phospholipid bilayer of cell membranes in leukocytes incubated with high concentrations of the food additive E407a. J CLIN MED KAZ. 2021;18(2):49-52.


  • Ruocco N, Costantini S, Guariniello S, Costantini M. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential. Molecules. 2016;21(5):551. doi: 10.3390/molecules21050551.
  • Weiner ML, McKim JM. Comment on “revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?” by S. David, C. S. Levi, L. Fahoum, Y. Ungar, E. G. Meyron-Holtz, A. Shpigelman and U. Lesmes, Food Funct., 2018, 9, 1344–1352. Food Funct. 2019;10(3):1760–2.
  • Tkachenko A, Marakushyn D, Kalashnyk I, Korniyenko Y, Onishchenko A, Gorbach T, et al. A study of enterocyte membranes during activation of apoptotic processes in chronic carrageenan-induced gastroenterocolitis. Med Glas (Zenica). 2018;15(2):87-92. doi: 10.17392/946-18.
  • Gubina-Vakyulyk GI, Gorbach TV, Tkachenko AS, Tkachenko MO. Damage and regeneration of small intestinal enterocytes under the influence of carrageenan induces chronic enteritis. Comparative Clinical Pathology. 2015;24(6):1473–1477.
  • Necas J, Bartosikova L. Carrageenan: a review. Veterinarni Medicina 2013;58:187-205.
  • Tobacman JK. Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect. 2001;109(10):983–994. doi:10.1289/ehp.01109983
  • Tkachenko AS, Kot YG, Kapustnik VA, Myasoedov VV, Makieieva NI, Chumachenko TO, Onishchenko AI, Lukyanova YM, Nakonechna OA. Semi-refined carrageenan promotes reactive oxygen species (ROS) generation in leukocytes of rats upon oral exposure but not in vitro. Wien Med Wochenschr (2020).
  • Barth CR, Funchal GA, Luft C, de Oliveira JR, Porto BN, Donadio MV. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. Eur J Immunol. 2016;46(4):964-70. doi: 10.1002/eji.201545520.
  • Sokolova EV, Karetin Y, Davydova VN, Byankina AO, Kalitnik AA, Bogdanovich LN, Yermak IM. Carrageenans effect on neutrophils alone and in combination with LPS in vitro. J Biomed Mater Res A. 2016;104(7):1603-9. doi: 10.1002/jbm.a.35693.
  • Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan-induced NFkappaB activation depends on distinct pathways mediated by reactive oxygen species and Hsp27 or by Bcl10. Biochim Biophys Acta. 2008;1780(7-8):973-982. doi:10.1016/j.bbagen.2008.03.019
  • Lopes AH, Silva RL, Fonseca MD, et al. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun Signal. 2020;18(1):141. doi: 10.1186/s12964-020-00621-x.
  • Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843. doi: 10.1155/2019/5080843.
  • Poggi P, Mirabella R, Neri S, Assirelli E, Dolzani P, Mariani E, Calder PC, Chatgilialoglu A. Membrane fatty acid heterogeneity of leukocyte classes is altered during in vitro cultivation but can be restored with ad-hoc lipid supplementation. Lipids Health Dis. 2015;14:165. doi: 10.1186/s12944-015-0166-3.
  • Rudd-Schmidt JA, Hodel AW, Noori T, Lopez JA, Cho HJ, Verschoor S, Ciccone A, Trapani JA, Hoogenboom BW, Voskoboinik I. Lipid order and charge protect killer T cells from accidental death. Nat Commun. 2019;10(1):5396. doi: 10.1038/s41467-019-13385-x.
  • Tkachenko A, Onishchenko A, Roshal A, Nakonechna O, Chumachenko T, Posokhov Y. Effects of semi-refined carrageenan (food additive E407a) on cell membranes of leukocytes assessed in vivo and in vitro. Med Glas (Zenica). 2021 Feb 1;18(1). doi: 10.17392/1213-21.
  • Posokhov YO, Kyrychenko A, Korniyenko Y. Derivatives of 2,5-diaryl-1,3-oxazole and 2,5-diaryl-1,3,4-oxadiazole as environment-sensitive fluorescent probes for studies of biological membranes. Reviews in Fluorescence 2017 (editor C.D. Geddes), Springer Nature Switzerland AG, 2018:199-230.
  • Posokhov Y. Fluorescent probes sensitive to changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during atherosclerosis. Methods and Applications in Fluorescence 2016; 4:034013.
  • Ho C, Stubbs CD. Hydration at the membrane protein-lipid interface. Biophysical Journal 1992;63:897– 902.
  • Disalvo EA, Bouchet AM, Frias MA. Connected and isolated CH2 populations in acyl chains and its relation to pockets of confined water in lipid membranes as observed by FTIR spectrometry. Biochimica et Biophysica Acta 2013;1828:1683–1689.
  • Ho C, Slater SJ, Stubbs CD. Hydration and order in lipid bilayers. Biochemistry 1995;34:6188– 6195.
  • Binder H, Gawrisch K. Effect of unsaturated lipid chains on dimensions, molecular order and hydration of membranes. J. Phys. Chem., B 2001;105:12378– 12390.
  • Noethig-Laslo V, Šentjurc M. Transmembrane polarity profile of lipid membranes. Advances in Planar Lipid Bilayers and Liposomes. Academic Press, Elsevier, 2006:365-415.
  • Yusupov M, Wende K, Kupsch S, Neyts EC, Reuter S, Bogaerts A. Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Sci Rep. 2017;7(1):5761. doi: 10.1038/s41598-017-06412-8.
  • Cordeiro RM. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochim Biophys Acta. 2014;1838(1 Pt B):438-44. doi: 10.1016/j.bbamem.2013.09.016.