Visualization of Breast Cancer and Safety: Review
Elmira Chuvakova 1,
Lina Zaripova 2 * ,
Aigul Segizbayeva 3,
Abai Baigenzhin 4,
Assel Yegembay 5,
Dana Idrissova 6 More Detail
1 Deputy Chairman of the Board in the field of science, National Scientific Medical Center, Astana, Kazakhstan
2 Scientific and innovation management department, JSC “National Scientific Medical Center”
3 Chairman of the Board of Directors, National Scientific Medical Center, Astana, Kazakhstan
4 Chairman of the Board, National Scientific Medical Center, Astana, Kazakhstan
5 Department of Radiology, National Scientific Medical Center, Astana, Kazakhstan
6 Department of Radiology, International Oncological Tomotherapy Center “UMIT”, Astana, Kazakhstan
* Corresponding Author
J CLIN MED KAZ, Volume 22, Issue 2, pp. 4-11.
https://doi.org/10.23950/jcmk/16273
OPEN ACCESS
75 Views
13 Downloads
Author contribution. Conceptualization, E. Ch.; methodology and investigation, A. Y., S. I.; visualization, E. Ch., A. Y., S. I.; formal analysis, L. Z.; writing – original draft preparation, L. Z.; writing – review and editing, E. Ch.; supervision, A. S.; project administration, A. B. All authors have read and agreed to the published version of the manuscript.
ABSTRACT
Breast cancer remains a leading cause of mortality among women globally, with early detection playing a pivotal role in improving patient outcomes. The treatment and prognosis have improved significantly due to early detection. The rapid development of various imaging techniques has led to success in early detection. In this article, we will discuss the current options for breast cancer screening, including mammography (both film-screen and digital), breast magnetic resonance imaging, automated breast ultrasound, and other techniques such as digital breast tomography and breast computed tomography. In addition, we summarize the characteristic features of the modalities in a tabular view for better representation and comparability. The goal of this review is to highlight the progress made in breast cancer screening and its impact on survival rates. The review concludes that the progress in the screening techniques results in a much higher survival rate, in particular due to detections of earlier stages of tumors. In recent years, artificial intelligence has emerged as a powerful tool in the field of breast cancer management, revolutionizing detection, diagnosis, and treatment planning. The rapid growth in artificial intelligence technologies, particularly machine learning and deep learning, has enabled sophisticated analysis of imaging data, pathology, and clinical variables, significantly enhancing precision and efficiency. We highlight advancements in artificial intelligence for breast cancer in past five years, and discusses the challenges and future opportunities in integrating artificial intelligence into clinical workflows.
CITATION
Chuvakova E, Zaripova L, Segizbayeva A, Baigenzhin A, Yegembay A, Idrissova D. Visualization of Breast Cancer and Safety: Review. J CLIN MED KAZ. 2025;22(2):4-11.
https://doi.org/10.23950/jcmk/16273
REFERENCES
- Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J, Siegel RL. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022; 72(5): 409–436. https://doi.org/10.3322/caac.21731.
- Yedjou CG, Sims JN, Miele L, Noubissi F, Lowe L, Fonseca DD, Alo RA, Payton M, Tchounwou PB. Health and racial disparity in breast cancer. Adv Exp Med Biol. 2019; 1152: 31–49. https://doi.org/10.1007/978-3-030-20301-6_3.
- Nover AB, Jagtap S, Anjum W, Yegingil H, Shih WY, Shih W-H, Brooks AD. Modern breast cancer detection: a technological review. Int J Biomed Imaging. 2009; 2009: 902326. https://doi.org/10.1155/2009/902326.
- Seely JM, Alhassan T. Screening for breast cancer in 2018-what should we be DOIng today? Curr Oncol (Toronto, Ont). 2018; 25(Suppl 1): S115–S124. https://doi.org/10.3747/co.25.3770.
- Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, Jemal A, Siegel RL. Breast cancer statistics, 2022. CA Cancer J Clin. 2022; 72(6): 524–541. https://doi.org/10.3322/caac.21754.
- Heddson B, Roennow K, Olsson M, Miller D. Digital versus screen-film mammography: a retrospective comparison in a population-based screening program. Eur J Radiol. 2007; 64: 419–425. https://doi.org/10.1016/j.ejrad.2007.02.030.
- Farber R, Houssami N, Wortley S, Jacklyn G, Marinovich ML, McGeechan K, Barratt A, Bell K. Impact of full-field digital mammography versus film-screen mammography in population screening: a meta-analysis. J Natl Cancer Inst. 2021; 113(1): 16–26. https://doi.org/10.1093/jnci/djaa080.
- Skaane P, Skjennald A, Young K, Egge E, Jebsen I, Sager EM, Scheel B, SØvik E, Ertzaas AK, Hofvind S, Abdelnoor M. Follow-up and final results of the Oslo I Study comparing screen-film mammography and full-field digital mammography with soft-copy reading. Acta Radiol. 2005; 46(7): 679–689. https://doi.org/10.1080/02841850500223547.
- Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Conant EF, Fajardo LL, Bassett L, D'Orsi C, Jong R, Rebner M. Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005; 353(17): 1773–1783. https://doi.org/10.1056/NEJMoa052911.
- Skaane P, Hofvind S, Skjennald A. Randomized trial of screen-film versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up and final results of Oslo II study. Radiology. 2007; 244: 708–717. https://doi.org/10.1148/radiol.2443061478.
- Luo C, Wang L, Zhang Y, Lu M, Lu B, Cai J, Chen H, Dai M. Advances in breast cancer screening modalities and status of global screening programs. Chronic Dis Transl Med. 2022; 8(2): 112–123. https://doi.org/10.1002/cdt3.21.
- Ren W, Chen M, Qiao Y, Zhao F. Global guidelines for breast cancer screening: A systematic review. Breast (Edinburgh, Scotland). 2022; 64: 85–99. https://doi.org/10.1016/j.breast.2022.04.003.
- Armstrong K, Moye E, Williams S, Berlin JA, Reynolds EE. Screening mammography in women 40 to 49 years of age: a systematic review for the American College of Physicians. Ann Intern Med. 2007; 146(7): 516–526. https://doi.org/10.7326/0003-4819-146-7-200704030-00008.
- Miller AB, Wall C, Baines CJ, Sun P, To T, Narod SA. Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial. BMJ. 2014; 348: g366. https://doi.org/10.1136/bmj.g366.
- Cronin PA, Gemignani ML. 14 – Breast Diseases. In: Clinical Gynecologic Oncology (Ninth Edition); DiSaia PJ, Creasman WT, Mannel RS, McMeekin DS, Mutch DG, Eds.; Elsevier, 2018. 631 p., pp. 320–352. https://doi.org/10.1016/B978-0-323-40067-1.00014-0.
- Carney PA, Miglioretti DL, Yankaskas BC, Kerlikowske K, Rosenberg R, Rutter CM, Geller BM, Abraham LA, Taplin SH, Dignan M, Cutter G, Ballard-Barbash R. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003; 138(3): 168–175. https://doi.org/10.7326/0003-4819-138-3-200302040-00008.
- Weigel S, Heindel W, Heidrich J, Hense H-W, Heidinger O. Digital mammography screening: sensitivity of the programme dependent on breast density. Eur Radiol. 2017; 27(7): 2744–2751. https://doi.org/10.1007/s00330-016-4636-4.
- Winkler NS, Raza S, Mackesy M, Birdwell RL. Breast density: clinical implications and assessment methods. Radiographics. 2015; 35(2): 316–324. https://doi.org/10.1148/rg.352140134.
- Olgar T, Kahn T, Gosch D. Average glandular dose in digital mammography and breast tomosynthesis. Rofo. 2012; 184(10): 911–918. https://doi.org/10.1055/s-0032-1312877.
- Horvat JV, Keating DM, Rodrigues-Duarte H, Morris EA, Mango VL. Calcifications at digital breast tomosynthesis: imaging features and biopsy techniques. Radiographics. 2019; 39(2): 307–318. https://doi.org/10.1148/rg.2019180124.
- Rafferty EA, Durand MA, Conant EF, Copit DS, Friedewald SM, Plecha DM, Miller DP. Breast cancer screening using tomosynthesis and digital mammography in dense and nondense breasts. JAMA. 2016; 315(16): 1784–1786. https://doi.org/10.1001/jama.2016.1708.
- Ko MJ, Park DA, Kim SH, Ko ES, Shin KH, Lim W, Kwak BS, Chang JM. Accuracy of digital breast tomosynthesis for detecting breast cancer in the diagnostic setting: a systematic review and meta-analysis. Korean J Radiol. 2021; 22(8): 1240–1252. https://doi.org/10.3348/kjr.2020.1227.
- Whelehan P, Ali K, Vinnicombe S, Ball G, Cox J, Farry P, Jenkin M, Lowry K, McIntosh SA, Nutt R, Oeppen R, Reilly M, Stahnke M, Steel J, Sim YT, Warwick V, Wilkinson L, Zafeiris D, Evans AJ. Digital breast tomosynthesis: sensitivity for cancer in younger symptomatic women. Br J Radiol. 2021; 94(1119): 20201105. https://doi.org/10.1259/bjr.20201105.
- Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, Hayes MK, Copit DS, Carlson KL, Cink TM, Barke LD, Greer LN, Miller DP, Conant EF. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014; 311(24): 2499–2507. https://doi.org/10.1001/jama.2014.6095.
- Olinder J, Johnson K, Åkesson A, Förnvik D, Zackrisson S. Impact of breast density on diagnostic accuracy in digital breast tomosynthesis versus digital mammography: results from a European screening trial. Breast Cancer Res. 2023; 25(1): 116. https://doi.org/10.1186/s13058-023-01712-6.
- Tice JA, Gard CC, Miglioretti DL, Sprague BL, Tosteson ANA, Joe BN, Ho TQH, Kerlikowske K. Comparing mammographic density assessed by digital breast tomosynthesis or digital mammography: the breast cancer surveillance consortium. Radiology. 2022; 302(2): 286–292. https://doi.org/10.1148/radiol.2021204579.
- Vaughan CL. Novel imaging approaches to screen for breast cancer: Recent advances and future prospects. Med Eng Phys. 2019; 72: 27–37. https://doi.org/10.1016/j.medengphy.2019.09.001.
- Schmidt G, Findeklee S, Del Sol Martinez G, Georgescu M-T, Gerlinger C, Nemat S, Klamminger GG, Nigdelis MP, Solomayer E-F, Hamoud BH. Accuracy of breast ultrasonography and mammography in comparison with postoperative histopathology in breast cancer patients after neoadjuvant chemotherapy. Diagnostics (Basel). 2023; 13(17): 2811. https://doi.org/10.3390/diagnostics13172811.
- Kozegar E, Soryani M, Behnam H, Salamati M, Tan T. Breast cancer detection in automated 3D breast ultrasound using iso-contours and cascaded RUSBoosts. Ultrasonics. 2017; 79: 68–80. https://doi.org/10.1016/j.ultras.2017.04.008.
- Ruiter NV, Zapf M, Hopp T, Gemmeke H. Ultrasound tomography. Adv Exp Med Biol. 2023; 1403: 171–200. https://doi.org/10.1007/978-3-031-21987-0_9.
- Pawlak M, Rudnicki W, Brandt L, Dobrowolska M, Borkowska A, Szpor J, Łuczyńska E. Enhanced detection of suspicious breast lesions: a comparative study of full-field digital mammography and automated breast ultrasound in 117 patients with core needle biopsy. Med Sci Monit. 2023; 29: e941072. https://doi.org/10.12659/MSM.941072.
- Boca Bene I, Ciurea AI, Ciortea CA, Dudea SM. Pros and cons for automated breast ultrasound (ABUS): a narrative review. J Pers Med. 2021; 11(8): 703. https://doi.org/10.3390/jpm11080703.
- Jahed DA, Dekeyzer S, Vanwambeke K, Antic M, Vanhoenacker C, Vanhoenacker F. Automated breast ultrasound (ABUS): a pictorial essay of common artifacts and benign and malignant pathology. J Ultrason. 2022; 22(91): e222–-e235. https://doi.org/10.15557/JoU.2022.0037.
- Rella R, Belli P, Giuliani M, Bufi E, Carlino G, Rinaldi P, Manfredi R. Automated breast ultrasonography (ABUS) in the screening and diagnostic setting: indications and practical use. Acad Radiol. 2018; 25(11): 1457–1470. https://doi.org/10.1016/j.acra.2018.02.014.
- Fabiszewska E, Pasicz K, Grabska I, Skrzyński W, Ślusarczyk-Kacprzyk W, Bulski W. Evaluation of imaging parameters of ultrasound scanners: baseline for future testing. Pol J Radiol. 2017; 82: 773–782. https://doi.org/10.12659/PJR.904135.
- Gao Y, Reig B, Heacock L, Bennett DL, Heller SL, Moy L. Magnetic resonance imaging in screening of breast cancer. Radiol Clin North Am. 2021; 59(1): 85–98. https://doi.org/10.1016/j.rcl.2020.09.004.
- Mann RM, Cho N, Moy L. Breast MRI: state of the art. Radiology. 2019; 292(3): 520–536. https://doi.org/10.1148/radiol.2019182947.
- Lehman CD, Smith RA. The role of MRI in breast cancer screening. J Natl Compr Canc Netw. 2009; 7(10): 1109–1115. https://doi.org/10.6004/jnccn.2009.0072.
- Sudhir R, Koppula VC, Rao TS, Sannapareddy K, Rajappa SJ, Murthy SS. Accuracy of digital mammography, ultrasound and MRI in predicting the pathological complete response and residual tumor size of breast cancer after completion of neoadjuvant chemotherapy. Indian J Cancer. 2022; 59(3): 345–353. https://doi.org/10.4103/ijc.IJC_795_19.
- Pinker K, Bogner W, Baltzer P, Karanikas G, Magometschnigg H, Brader P, Gruber S, Bickel H, Dubsky P, Bago-Horvath Z, Bartsch R, Weber M, Trattnig S, Helbich TH. Improved differentiation of benign and malignant breast tumors with multiparametric 18fluorodeoxyglucose positron emission tomography magnetic resonance imaging: a feasibility study. Clin Cancer Res. 2014; 20(13): 3540–3549. https://doi.org/10.1158/1078-0432.CCR-13-2810.
- Bitencourt AGV, Lima ENP, Chojniak R, Marques EF, Souza JA, Andrade WP, Guimarães M. Multiparametric evaluation of breast lesions using PET-MRI: initial results and future perspectives. Medicine (Baltimore). 2014; 93(22): e115. https://doi.org/10.1097/MD.0000000000000115.
- Jalaguier-Coudray A, Delarbre B, Brenot-Rossi I, Houvenaeghel G, Villard-Mahjoub R, Viens P, Thomassin-Naggara I. Contribution of FDG PET/CT for the optimization of the management of additional lesions detected on local staging breast MRI. AJR Am J Roentgenol. 2016; 206(4): 891–900. https://doi.org/10.2214/AJR.15.14656.
- Radhakrishna S, Agarwal S, Parikh PM, Kaur K, Panwar S, Sharma S, Dey A, Saxena KK, Chandra M, Sud S. Role of magnetic resonance imaging in breast cancer management. South Asian J Cancer. 2018; 7(2): 69–71. https://doi.org/10.4103/sajc.sajc_104_18.
- Boone JM, Kwan ALC, Yang K, Burkett GW, Lindfors KK, Nelson TR. Computed tomography for imaging the breast. J Mammary Gland Biol Neoplasia. 2006; 11(2): 103–111. https://doi.org/10.1007/s10911-006-9017-1.
- Desperito E, Schwartz L, Capaccione KM, Collins BT, Jamabawalikar S, Peng B, Patrizio R, Salvatore MM. Chest CT for breast cancer diagnosis. Life (Basel). 2022; 12(11): 1699. https://doi.org/10.3390/life12111699.
- O'Connell AM, Marini TJ, Kawakyu-O'Connor DT. Cone-beam breast computed tomography: time for a new paradigm in breast imaging. J Clin Med. 2021; 10(21): 5135. https://doi.org/10.3390/jcm10215135.
- de Jong D, Desperito E, Al Feghali KA, Dercle L, Seban R-D, Das JP, Ma H, Sajan A, Braumuller B, Prendergast C, Liou C, Deng A, Roa T, Yeh R, Girard A, Salvatore MM, Capaccione KM. Advances in PET/CT imaging for breast cancer. J Clin Med. 2023; 12(13): 4537. https://doi.org/10.3390/jcm12134537.
- McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, Back T, Chesus M, Corrado GS, Darzi A, Etemadi M, Garcia-Vicente F, Gilbert FJ, Halling-Brown M, Hassabis D, Jansen S, Karthikesalingam A, Kelly CJ, King D, Ledsam JR, Melnick D, Mostofi H, Peng L, Reicher JJ, Romera-Paredes B, Sidebottom R, Suleyman M, Tse D, Young KC, De Fauw J, Shetty S. International evaluation of an AI system for breast cancer screening. Nature. 2020; 577(7788): 89–94. https://doi.org/10.1038/s41586-019-1799-6.
- Rodriguez-Ruiz A, Lång K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, Helbich TH, Chevalier M, Tan T, Mertelmeier T, Wallis MG, Andersson I, Zackrisson S, Mann RM, Sechopoulos I. Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst. 2019; 111(9): 916–922. https://doi.org/10.1093/jnci/djy222.
- Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology. 2019; 292(1): 60–66. https://doi.org/10.1148/radiol.2019182716.